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Abstract
Semi-lagrangian (SL) schemes are of utmost relevance to simulate two-phase flows

intended to propose a second-order time multistep SL/ALE/FE scheme to track par-
ticle trajectories traveling amidst single- or two-phase incompressible flows both in
fixed and moving mesh si
that considers the mesh velocity as part of its backward-in-time integration. Trajec-

tory departure points are searched through extrapolation and followed by a multistep

of two-phase benchmark flow simulations are carried out by using the cubic element
to compare the

as well as to analyze enhancements in representing the two-phase flow dynam
use the 2D axisymmetric Navier-Stokes equations as underlying model. Error anal-
yses, convergence tests, quantitative and qualitative comparisons are presented and

discussed to highlight the superior conservative feature of the novel scheme.

KEYWORDS:

Semi-lagrangian method; finite element method; fluid particle tracking; surtace tension; high-order

approximation; moving mesh

contaminants on aquifers, and the propagation of saturation fronts in petroleum reservoirs.
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Over the years, the semi-Lagrangian method (from now on, SL) was successfully applied to approximate advection dominated

flows since its inception in the Earth sciences community* a few decades ago. The technique attracted CFD practitioners mainly|

ecause of its ability to deal with large time step simulations (high CFL numbers) and accurate trajectory integration, whict
ralice an a nergigtent tracking of the matarial maotion of Anid narticleag Tha comhination hatwean CT and the finite alamant
Heiivd vil a P\./lblbl.\.zlll. lla\al\lllé Ul ulv liidlvlidl 11ivuauvll vl uauiu P(ll uvivoy 111V Lullivliiauuvll UvLyuouldl VL dllu ulv 1iawe viviuvlily

Afterward, several authors devised SL/FEM schemes dedicated to deal with incompressible flows????? .

A few more recent methods embodied SL schemes into tailored algorithms to deal with spray combustion? , weather pre-|
diction” , rheology?, guiding-center problems® , and general 3D transport problems’?? . In two-phase flow models, the SL’
presence is somewhat more recent and brings two main features. Firstly, it conserves the same properties of stability and accu-
racy exhibited in single-phase flow dynamics concerning the integration of the advection term. Secondly, it allows for equivalent

accuracy when Level-Set/Volume-Of-Fluid functions are used as phase definition. Aithough many papers have taken advan-|

tage of both situations, we will give a quick overview of recent usage of the SL method for two-phase flows without making
hanint T anint Anamaricang
PULLHL-U Y~ PUILLIL LULLIPALISULLS.

Discrete models based on the advection of the level-set as phase definition function perhaps are the most popular among those

of near-interface points and the advection of the interface itself for bubble and droplet simulations®? , implemented to capture]
free surface in Newtonian and non-Newtonian interfacial rheology? , and used in combination with second-order interpolation|
to advect the level-set function® . As opposed to level-set functions, other formulations also appear. In’ , for example, the SL|

method was used together with a 4th-order Runge-Kutta method to advect the volume fraction function under a VOF-PLIC

— Volume-Of-Fluid/Piecewise-Linear Interface Calculation — context. Another proposal was based on the CIP/MM/FVM —

Constrained Interpolated Profile/Muiti-Moment/Finite Volume Method — was used together with SL interpolation to advect]

brartinlag chanming intarfaonag and Athaw asantiting Avvar ganaral fron whooa Aacy ~Ans fonratinng s DRihhla dafarmation cihicet ol
Pal ucCiIcd Dlldylllé 1c11accod alild vuulclt Liuallllllcb uvel 55 1Iclral LWU-PIIQDC 1HUwW \./Ulllléuldllullb DUUDUIC UClulllldauvull SUu|jCllL W
maonetic forces wac alen invecticated throuoch a CIP _ Constrained Internolated Profile —— congervative ST to colve the flow
Mmagnetc Iorees was aiso mvestgaiea tnrougn a Cix Lonsuamead anerpo:ated rroiue Conservauve S o sGive tnc oW

We may observe that almost all the SL methodologies presented for two-phase flows as those mentioned above have focused|
primarily on interface-capturing approaches. On the other hand, numerical experiments involving interface-tracking procedures
are so far embryonic. The authors have been reaching considerable outcomes with moving mesh SL/FEM techniques based on|
a front-tracking Arbitrary Lagrangian-Eulerian (ALE) approach to simulate the dynamics of multiple continuous and dispersed|

two-phase flow patterns with first-order SL integration®**? . This ensemble SL/ALE/FEM has advantages that come across

many challenges faced in two-phase fiow modeling”® . A series of arguments support this assertion. Firstly, interface-fitted ele-
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node entanglement due to a purely Lagrangian description or avoid expressive node stagnation caused by a strictly Eulerian|

description. Thirdly, fuii controi of volume and surface tesselations assure adaption and refinement. Lastly, swirling trajectories|

PRRSUS [ |y [ S L pa i T Ry DR DU P | ——— PR R MU [ I 0 oSSR F AN S S LIS NP Rp
and disperscd bodics acnicve DCLCT HICErauon 11 d broad sCopce o1 twO-piiasc 11OwS. DIICICIUY 1101 UI€ ddluondl Herpreta-|
t1ian of the QT mathad tha QT /AT FE ~amhination cearcheg for nagt lacationg that advanca forward in time to mateh nointe that
LIVI11 Ul Ulv Ol 1Iuvuivu, ulv ly Maads vullivliiiauvll svalviivd 1ul PQDL 1vuLduulld uidl auvdadlive 1ul vwdadlu 111 uUllv W liiaweil PUJLLLD uiay
were displaced not over a fixed mesh, but dynamically due to remeshing operations

Regardless of the fluid flow nature, the main numerical problems encompassing the SL. method orbit around the pair interpo-
lation/integration in a variable space-time domain. Achieving high-order schemes with computational cost-effectiveness is of]
utmost importance even though substantial computational resources are at hand.

This paper is intended to propose a multistep SL/ALE/FEM scheme to track particle trajectories traveling amidst single- or
two-phase incompressible flows both in fixed and moving mesh situations. The novel scheme is a BDF2-like implementation|

that applies two backward-in-time integrations that embody the mesh velocity. Departure points are searched through extrap-|
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conservative feature of the novel scheme.

2 | METHODOLOGY

2.1 | Mathematical formulation

( ou -\ - N 1. I

— +c-Vu) =-Vp+ L(z,r) + + —1 la

/’\af ) p Ar2 (z,r) +pg Fo (la)

V-u=0 (1b)

I TR, PRRDR TSI T ISR (SR N . SRS SRS S | EECURE TSNS DURPS ISR s (R, [N PRI oI 15 R, Y L R
WIICIC p IS UI€ varidol€ dcnsity das a runcuon or z danda r, 7 1S Ui ume, u 1S e 11ow velocClty 11€id, € = u — u 1S uI€ convecuve

valacity (11 1Q a mag alacity) 71 tha nragenire o iq tha oravitatinnal accalaration and £ — -V I 1¢ tha intarfaca forca tarm

vueliuuvilu \I.l 1D uIv 11Ivdll vueluullal /, II 10 uiv PI\JDDUL\J, 5 10 uiv 51av1tuuuucu avuiuviviauvll, allu i — AV 11 15 uUlv vl idave 1vive Lol

with curvature x and the gradient of the Heaviside function VH . The dimensionless grouns Ar and Fo stand for Archimedes
g grouy
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and Eortvos numbers, respectively defined as

2
. _ Po8To o _ Aoy
Ar = d Eo= ,
112 On
I‘"O Y
where the subscript stands for reference values, Ap; is the difference of densities among phases and ¢ is the surface tension

read as:

V = [0,,9,],
V-=1[0,,r'+09]"
z° r s
T
L(z,r) = [L(z,7),L.(z,n]",
L(z,r) = r " d(ur(dm-e)+ ud (m-e)) +2rd (ud (u-e))] and
Z\=3s ") LY P rss A z/ ¥z r’7 VAN AN z/71
Liz.r) = r 20 (urd-e )+ ro(uou-e))+ro(ud(a-e))—2ru-e)l
1z F) FOLON\UIO\U - €, ))) T FO U\ - C)) T FOAUO B~ Cj) — 2F W - C ],

for axial and radial (z, r) coordinates, unitary vectors e, and e,, and u the variable dynamic viscosity as a function of z and r|
respectively.
To lay out the mathematical background for the fluid flows studied here, let us consider that Egs. hold over the space-|
time domain € X 7, with £ C R? compact and having (outer) boundary I, and 7 C R finite. More generally, we can define

Y

€2, C Q as the dispersed phase, so that £\€2, corresponds to the continuous phase and I', corresponds to the (inner) boundary of]

reference frame). A zero pressure Dirichlet boundary condition is used at the outflow (left boundary), and an inflow condition|
is set with the axial velocity of the bubble/drop center of mass velocity at the right boundary, therefore keeping the bubble/drop

fixed in space when the moving reference frame is used. A generic model for this kind of flow is depicted in Figure[l]
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inner region €2, with boundary I', that moves along the symmetry axis z and undergoes interface changes along the radial
coordinate r.
and variable length time steps:
— T 11 wit K = F c \ ()
Q=7,UT,, withE, €Q, E, €Q\Q, 2)
o N=1ay A+ _ i+l _ in o)
1 =V, _,yAal, Aaf, =1 , (J)

where element-wise continuity is ensured. Furthermore, let x be an arbitrary mesh node and H(x) = {0, 1/2, 1} if the node]
belongs to the continuous phase, interface or dispersed phase, in this order.

The material derivative is discretized with the Semi-Lagrangian (SL) method, therefore ensuring unconditionally numerical
stability for first order approximation. Despite allowing relative large time step and mesh size, high order SL schemes do nof|

assure stability* . Common steps concerning the classical FE workflow allow us to define the function spaces

17— [ = 11200 =11 on AO )
U = eyt e ; u=uUp On 08y
V1= {vE[L(®) : v=0 on 0Qp}
[ [ )
Q:=3qerX@;: [qgrdaz=0},
J
L J J
where H' is the usual Sobolev function space and L := {v € £* ; [,v*r"dz < oo}, for « € R, is a square-integrable

A a??

function space in the context of axisymmetric FEM - * , with dz = d zdr. Moreover, we derive a weak form based on the Galerkin|
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whose bilinear forms are

A (ax ¥ P 20 Arw (5o
i\, V) = / pa-vYraiz, \Va)
Q
(n,v) = [ Ve s vWiydz+2 | wrlta-e)v-e)dz (5b)
AR YV j PO vy Jwse & / It A VAN Np) W \~ ¥
Q Q
G(p,v) = j/ Vp-vrdz, and (5¢)
Q
r r
D(g,u) = / qV -urdz + / qu-e.dQ (5d)
J J
Q Q
The operator g is a compact notation for the discrete ALE material derivative that will be treated as a SL term and « is the
t

curvature of the bubble/drop. After assembling the resulting matrices, the previous equations are converted into a system of]

equations that must be solved for convenient boundary conditions.

| Mixed finite element spaces

c

IR . CU " PRI 1 . PR PR S BRI o 11 : :
11 tN1S section, we write aown tne stavie eiement used 1 tnis paper to acal witn £gs. . by 1oiiowing a generic notauon|

e dac of B lat tic concider x. g vertor noder ¥ — L% 4w ) with i £ i an edoe nodes and x T
UL 1IUUCS UL l\h, 1CL Uud LullIuct. z\l a verie. wouc, iij —_ ;\L i T z\j}, wiul it + J, dll edge rioue, ailld Aljk 5\ i T Aj T z\k} d
rontor nodo For all caceg 7 i = 1 9 2 Theage aganaralitiec allow 11c ta ectahlich the “10_nnde trianola” (~1ihi - element) whoeel
cenler noge. ©Or ain €ases, 1, 1,4, 3. 101€5C ZeNera:ities aiiow us to €51adilsn i€  1vU-NOGC riangic (cuvlc ciement), winosg

coordinates 4, ; , are respectively of degree 3 (cubic), whereas the shape functions for pressure p are of degree 1 (linear). The
chosen element is Ladyzhenskaya—BabuSka—Brezzi (LBB) stable — pair (P;, P;) — Therefore, it does not require any other
artificial stabilization technique, such as the Pressure Stabilized Petrov-Galerkin (PSPG). Moreover, the third order piece-wise
polynomials used for velocity/scalar interpolation assures high numerical accuracy. Figure []illustrates the 10-node triangle in

terms of the ijk-notation.

Py

O
xi2¢ X3 e velocity/scalar node

Xoo1 X123 Xaaq
A ® R O pressure node
O, ©

X2 X223 X332 X3

FIGURE 2 Stable element used in this paper: the “10-node triangle”, (P;, P;), or cubic element.
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Therefore, the triplet (K, P, D) is defined by

— 10_noade triangla (Lo
I — l1vu-ilivuc Llldllslb \Uﬂ.}
P=P@P (6b)
D = {u(x,), u(x;;), wx;;; ), w(xX; ), o(x,)}, (6¢)
rharaag tha intarnalante 711 far vnlanity and qealar Galdg ara ragnectivaly, givan hy
wilivivas uiv lllL\./lk)Ulﬂlll,D L]|°] 1uL V\.leL/ll,)’ allu dStailal 1iciud aire, IDDPUULI V\./ly, 51 vulil U‘y
Ly
IMu] = = A:(BA, —DBA —2ux;) +
7 24 MiO4 i i
1
' 2 v 1 1" /I — IN__ 7/ '
-1-2 2, 4434 = Dulx;) +
i#j
A=l
+27 ), AdjA4u(x) and (7a)
i<j<k
Iigl = Y Ao(x), (7b)
ad
1

where ¢ is an arbitrary scalar field to be interpolated. In this paper, it is essentially a placeholder for the pressure field, or the]

generic scalar field y as presented in Eq. (30).

7"4 | €
oo T D

SL/FEM approaches are underpinned by two subsequent steps: i) a backward-in-time integration, whereby fluid particle tra-|
jectories crossing a patch of elements are traced backwards until their departure points; ii) an interpolation of the fluid fiow

variables at the departure points. However, under the ALE viewpoint, the arbitrary mesh motion becomes a complicating factor|

hhnth - smtagratinn and intarnalatina Mo dicqricg tha +~la ~lavad ke tha manach valanity an o hoheidioad QT /AT B/EEN gmmenanh
vulLul W uucsl alvll anlu llllClPUlaLlUll. 1 UIdLUDD UIC 1UIC Pl _yCU U_y LC 1110511 VCIULIL)’ vl a lly ULIULZCU OL/ AL/ I'LUIVL PPLUC[\;II,
we firctly recall a faw mathematical acnecte concernino the ctandard ST methoad with a cimnler notation
we-firstly recall a few mathematical aspects-concerning the standard SL-method with-a simplernotation
Throughout the continuum, it is usual to identify by x a spatial position in Q so that X = {(x, r)}’zj’ is the trajectory formed
7=
by all points visited by a given particle in the interval f < = < h. The trajectory X is also the solution of the differential equation|
dX(1)
——— =uX(7),7), (8)
art
P TSI LR JY NS | § AU | ERRPL 1Y JUSPL LI + LS T L AL B B TUIPL TRV BPIDE TN SRR JLS
O d ClldIdCLCIISUC 1111C We Cdil X, UIC 100t 061 A, 1.C. UIC POsS1uoil OCCUpicd Dy uIC pdlucCliC di UIC 1istdiit 17 = J, WILC X,
e callad the “haad” of Y 1 0 tha nagition where tha narticla will ha ot tha fiitnire time ingtant + — h Than within the intarval
S valivu uiv nueau Ul /a2, 1.U. Uuiv PUDILIUII Viliivliv uiv P(l.l LIVIU W1ll UL Al ulv 1utuly uliv aiswanit ¢+ — re. 111vll, VWil ulv 1wl val
f < 7 < h, the arrival point x is obtained through integration straightforwardly provided that x_is known
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1s valid. Numerically, we should think of 7 as a parameter that will define arbitrary time steps. For brevity, let us consider f = "

and A = 1"*! as two successive time instants. The SL method enforces that x, matches a mesh node at #**!, but demands that

annrovimated denartiire noint denoted by v mugt he aq eclace ag noggible tao thae triia danartiire noint v Whan ranlacing Fa
al}l}lu/\llllal\/u u\./llal Lulv yUllll, uvlivivu v Ad, 111UdL UL dd LviUudL ad PUDDIUI\J LU uiv uuv u\./llal wulv PUllll A* yyliivlil 1\41}1“\41116 1_4\—1.
@ bv a simnle discrete shift comnuted ag
0y a simpie discrete shitt computed as
X, XX, =X, —a, (10)
*® a a 7
1
cm that A~ ~ t”+ == (W7 N\ N T 4 B o I P I RS, o P oSN R ., | crlaima Qasraral crlhairac “m
SO Uldl ¥ ~ jt" UulA(7), 7) a7t wurns 1o a bdCKkwdard aisplaceimeit veClor anad proauces a Iirst-oracr scneme. Several SCICINES o)
~arnniita v ara bnawvwn 1in tha litaratiira hiit higch_ardar cochamag ara mara intaragting haraiiga 11iga miltinla tima ctang and radnical
\/Ulllt}ul\./ W dlv AIUWIL 111 uIv liviatulv, vui lllsll Uluul dSuliviiivo dalv vl llll\./l\/DlJJlB vuLLaudsue uouv lllullll}l\/ e DLUPD aliu 1vuuvy
the numerical dissipation®?”?

Dy  de P, ") — (x4, 1)
n_=I+C’V¢% — (11)
Dz 01 At

A ~mrantivia wotac AF Alhonga Anarie tmgtantananiioly ti o ansaliaad AFFaA

CULIVOULIVED 1dLlCS Ul LldlIEC ULl ul HISLALAlICUUS1y 111 a LULlIvilcu Clicut
From thic noint on we accume that m(x. ") will be denoted hy the reduced discrete notation " Recange nerfect matchec off
LTOmM UiS point Of, We assume wat ¢ X, 1) Wi 8€ GEROWCA Oy i reGucea GISCreit noauon ¢ . 5eCause periett maifaes Oy

feature inherent to any SL scheme we should care about in terms of effectiveness” .
The ALE motion brings a further peculiarity into Eq. (TT)) that leads to a somewhat complicated interpretation of the material
derivative due to the relative velocity ¢ = u—a. When i1 = 0, the finite element mesh is maintained fixed as if it were describing
a pure Eulerian motion, but a Lagrangian mesh is virtually produced by the union of all the “foot” nodes. That is to say, we can|
observe the existence of a distorted mesh at each time step’ * . On the other hand, when @ # 0, the integration should embed the]
relative motion and take both the Lagrangian and Eulerian parcels into consideration.

eaBlic o cpharaa PR TSP T I SN b 4T QT mdn e e o e 4
uic lb d SCICIHIC UldL TIPS Uud U HHCT PICL UIC O L HCETA1I011 OVEL d SpacC-Lil

Circle-marked points denote positions over the continuous medium, whereas the square-marked points denote approximated|
positions of discrete interest that were included for completeness. Vectors stand for displacements, while geometrical loci are
shaded regions that identify material points in different motion descriptions. Time intervals mark standard divisions along the
time domain.

Given that, we can proceed to recognize each entity and take advantage of the illustration to approach the two-time scheme|

nl ” ”
3

to be introduced later. Slices at T = """, ©

!, represent the fiow dynamics after distinct interstices of Az, and
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continuous
time
arrival point / A /
143 ”» X(Z /
(“head”) / it
|
|
1
trajectory error at 7 = t" D e
-
‘_\7/ L X(7) o~

Ve AT @

s 4

\ ' exact departure point
! « » _ 4n—1

h / (“foot” at T =t""")
T
\ |
W . X _

/ xj 1By / =t =
v
trajectory error at 7 = "~
FIGURE 3 Illustration of the ALE/FEM semi-lagrangian integration occurring over a space-time domain. The arrival point ig
tl« “h 15 wh 3

1 1 1

w
\arca shaded in gray) is maintained fixed with I.lHlC but it is dDblrdLUy distorted at each time before the next advection is updcucu
(areas shaded in red and yellow ). In a purely Lagrangian motion, the characteristic carries “foot” points to the arrival point by

forming abstract meshes to which x, and x,, belong. However, such points are approximated by off-mesh departure points x”
and x”~! found from backward vector shifts.

5

d.L

At,. The arrival point x,, lies in 7 = #"*! and it is the “head” of the characteristic line X(z) (green solid line) of a fluid particle]
that visited the points x,, at ¢,, and x,., at 7,_;. In order to integrate the trajectory, a first-level backward search tries to pursue|
x, exactly, but this is hampered by numerical errors that leads the integration to an approximated departure point X,.
In the case of a pure Lagrangian motion (&t = 0), it is necessary only to have a unique displacement & = u(¢")Ar; from|

an Eulerian locus (gray-shaded area) to reach the approximated “foot” point one “step” behind. In reality, the Eulerian locus|

is required to distort back onto an abstract locus at #* (omitted in the figure) to which x, belongs. However, in virtue of the

that
X, ~xX'=x —(a, +a,) (12),
* d a A | 2/ \ 7
is B PRI PR P M . P SR, I R | BRPRSEE R, ~1 3 ek s e e PRI . PR [ DR R, R o e P |
This way, the mesh velocity is embedded into the material derivative approximation by considering the arbitrary geometrical

toward the projection of x” (at the slice "*!) to bring @, closer to ar. This takes place, for instance, whe
proy # g I
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dispersed bodies are simulated, in which the mesh motion follows the flow direction and motion trends tightly. Elsewhere, X"+!
moves arbitrarily to any other direction within acceptable limits that do not damage the mesh construction.
Departure points will generally occupy different positions. When moving back to previous time instants, we can have as many|

slices as desired. However, as said before, the irue departure poinis are numerically approximaied by off-mesh poinis resuliing

vast and may cover all family of Runge-Kutta, Adams-like, or BDF-like methods, for example. At our convenience, we adopted|

an illustration that approaches the SL2 scheme introduced next. The vector algebra for a two-step scheme reads as

n—1 _ . R PN
X, ®X) =X, — (a) +a3), (13)
with a. = (1" DA7 = c(t" DY AT, + Az))
vviua M3 - \r\lr }l—\lv - \'\l« }\l—lbl T l—ll-z/-
In this paper, we consider the ALE viewpoint. Hence, the arrival points move arbitrarily with the mesh velocity &t — details

on the dynamic meshing and the equation for @ are given in’. As seen, the SL/ALE integration is similar to the traditional
interpretation of the SL method, but differs as for persistent searches for past locations that advance forward in time to match|

points that were dynamically displaced due to remeshing operations.

| =y hait it chanld ha claar that aanivalant raaganing haldg for avary qealar fiinotiaon v haing trananartad thranioh tha Aqoo
1_4\.1 s UUL IL Sllvulu UL vival uiac U\.iulval\/lll lbabulllllé HHUI1Ud 1uU1L \/V\./l.y sStdial i1ulivuvull @ U\/lllé LlﬂllDPUl LU unvuzZil uiv 1iuw
field
2.5.1 | One-sten scheme (SL.1)
Firm S L IC=S1CP SCIICIIC WL L)
The one-sten inteorator (ST 1) reliec on a one-sten backward dignlacement written ag
111€ ONE-SIEP IMICZrator (Sivi ) Ireies on a One-Step vackward aispiacement writien as
t'”'l
P a— /..{V/-\ AN Adr ~ a1 At o~ (5 1 oMYA s 1A\
a = WAalT), 7)at ® 4, Al U, + ¢ )ai, (14|

1CV S 1L, LIl 1

where ¢! = u’ — @'. Whenever it is clear, the subscript i — which is related to a mesh node — will be omitted. Using Eq. (TT))

the discrete version of the material derivative becomes

o
&
=
=
*
|
=
S

~— 4 (15)

J
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>
{

.




G. P. Oliveira ET AL 11

Eqgs. (8), (10D, and (14) can be put together to integrate the characteristics, so that

n+1

PSS | P

IX Xt _ xn
Q) ~ 4 d LN - ( Lo
~ - Ad —_— A \u T U

dr At,

———
— u

is a first-order scheme. The current velocity u"*! becomes the unknown field and u’, is the departure velocity, which must bef
computed with a search and interpolation procedure. In fact, the computation of u, is the most costly operation. Additionally, wej
should note that the time step Af; may vary arbitrarily due to the mesh motion, since the characteristic mesh size may reduces|
and, consequently, affecting the time restriction imposed by the explicitly treatment of surface tension. Once all unique departure
points are computed, the flow variables must be interpolated at these points. In particular, the velocity field is found by using

the u-interpolant defined in Eq. (7a) as

or u(x,, t") = Z[u(xj, )], in extended notation (see Fig. EI)
Figure ] shows the behavior of discrete trajectories over one-dimensional space-time stencils for the conventional fixed mesh|

AN 1 1 N 1 1

[Euierian framework (ieft) and the dynamic mesh ALE framework (right). The key differences between both rely on the charac-

time in the AT E framework 1e ¢ = 1 — 11 thev are maintained fixed in the Eulerian framework nrovided that ¢ = 1
ume 1n e ALc Iramework, 1.6. ¢ = U U, ulCy are maiainea nxed in tné cuilrian ramework proviaea tnat € = u.
o original node position @ node position after displacement
. 42 42
| ! | !
an41
| .
71,"At1 m1 n A
P e
Y VLA gl [y * r— tn+1
Aty Tg .o Aty { Tg .
I tn | T‘_D L
— T Ti  Tit1 — 7 Ti  Ti+1
i i
(a) SL1: Eulerian framework. (b) SL1: ALE framework.

FIGURE 4 One-dimensional space-time stencils representing the first-order SL scheme. The point x, is found by integrating
the fluid trajectories backward-in-time. Afterward, the flow variables are interpolated by considering the degrees of freedom|
placed at the nodes x,_; and x;.

Figure[jrepresents, for a single node, the methodology used to solve Eq. along with the search and interpoiation procedure

based on the neighbor-to-neighbor technique. As said before, the departure point X, does not match a mesh node. Therefore,
tha aloarithm chonld he ahle to datact nointe balongino to the elamante The ctrataoyv of cuich aloorithm follawe the nearact nodel
L cusul AU S1IVULIU UL dUIL LU UL PUIIILD U\/lUlelllé LU ulv viviiiviiw,. 111v DLlClL\/S Ul suuilil aléullllllll 1ULIUVYD UL 1Ival Lol 11VUuUy

each vertex at the neichbor element is evaluated to check the distance from
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where u"*! continues to be the current velocity, u, is the departure velocity at ", and uj’i‘l, ditto at #"~!, which should be the]
ultimate velocity responsible for updating the advection. Both departure velocities are unknown at this moment. Since Eq. (Z0))

is approximated by a second-order time finite difference, u; and uZ“ depend on a two-stage time splitting procedure of search

c .

1 1o P S I T P R T n oo o+t 1 T el -
and mterpolaton witnin L\[l . Bacn stage aivides A[l 1mto tne 1nrst nair, Irom 7° to r 2, dnd tne seconda naitr, rromzi7 2 to7"" . 1

[(At; + Aty)? — A}
dy = ——— — (21a)
Aty(At; + Aty)
2
d, = M (211-)
27 Aty (At + Aty)
Ar
dy = ————. (21c)
Aty(At, + Aty)
In case of constant time steps, d; =3/2,d, =2,and d; = 1/2.
For the first backward integration in SL2, Eqgs. (§), (1I0), (I4), and lead to
dX X.’.'J.—! x”
- 1 1
(1) ~ O d _ an+s3 +cn+5
dr At,
ool ot
= 4= Ka (12’1
n ntl ntt o+

= x) =x"" — [0 +""2]Ar, (£2)
Durino the first stace of inteoration. we exnect that the denarture velocitv n” is estimated throuoh a second-order annroximator.
During the first stage of integration, we expect that the departure velocity u) is estimated through a second-order approximator

1

However, before computing it, we should note that the relative velocity ¢"*> where the dynamics of the characteristic is embedded

1
is undetermined at #"* 2, thereby requiring extrapolation. To maintain the order of accuracy, we used a second order extrapolation|

that estimates

w12 [ At 2410 1o
n n n—
[ /=(—)c——c (23)
A 4 ~
\ AL\ll / Z
for varying time steps, or
J o il
n+1/2 n 1 a1
ctl/ ¢ — Ec (24)
e A cbnnt f1mn cbammo Tha Gauct cbacn 30 mvnmnnlinAdad sx:lhiila siindatinag thhno damastirean vralanitsr ot 23/l Ly amanliring tha sz smntamanlont 10
1UL CulldLlallt uIic blcpb. 111C 115U olagc 15> culiciuucu wiiic upuauug uic UClJ 1uu1Ic VClUblL_y al ud U_y applylllé UIC u-111ct PUlallL 11
the came wav ac in Ea 7
the same way as 1n Eq. {1/).

whose accuracy is second-order time®? . Then, for the second backward integration in SL2, an equation with similar form to
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Eq. can be written as

f— | LY
=u —C
dr 2At,
n—1 __ _n+l
=X =xI" —ay,
1 a1 o o -
=> X; = X;’T’ —2(u” + ¢")Atr,. (25)
awever BEa @ carreanande to diceratizationg with conatant tHime ctan For varvine fime cteane i+ muat he modified? o
HL1IUWULUVLL, Ll\i MUIIMDHUIIUD LU UIdLILLIZAUIULLID VWILL LuUlLIdLAlLIL uLLv Dl,\./tl. 1Vl ch_ylus e DLLHD, 1Ll 111UdL UL 111vudllivua w
1NN e+l o TeAs IA$N2 — 1l — (At /At 2xn—]
dX(7) a T \&l /AhL) LIRS Bl /ahL)™X, o "
d ~ - — =u +c
T |(At,/Aty) + 1] At
=>Xn—i 1;\Xn+1+/92_1\X77_/9+1\At [ﬁii+ci7]
d_(nz)a (n2)d(n2)1 ’
\ G-/ \ & / \ 8 /
A ¢
. JAVS}
with 0 = —. (26)

Once all the secondary departure points are computed, the flow variables must be interpolated at these points. In particular, the|

velocity field is updated by using the u-interpolant defined in Eq. (7a). Points at 7! are reached with nodal velocities evaluated

n

at 1.

w' ™! = Tluh)]
d (X, )]

(
i’ \

or u(x,, t"‘i) = I[u(x;,t")], in extended notation.

Likewise Fig. [ Fig. [ shows the behavior of discrete trajectories over one-dimensional space-time stencils for the con-

cnhnma Ac crnn tha anea diffaranan hatrann QT 1 and QT D g an aviera cnarnh raciriead o Bnd tha ltimata damartiies ~aint wl—1
scneme. As seen, the Core airrerence oetween SL 1 and S« 18 an extra searcn required to 1ind the uitimate acparture point X,
and. conseauently. the internolated velocity n"~! need to undate the material derivative

and, consequently, the interpolated velocity u, ~ used (o update the material derivative.

lation procedure based on the neighbor-to-neighbor technique. Once again, the departure point xZ,‘l does not necessarily match
a mesh node. Therefore, the algorithm should be able to detect inner points to the elements.
In this scheme, the discrete finite element matrix equations embed the second-order approximation for the general case of

varying time step. Their final form is given by

/d&-i- ! K\ﬁ"+1+G =d,—1u —a’—pii”_1+L
\ "Ar, T A2 At 4 A A 0

L)
7
=
‘]

_|-
—
<
>

=)

o<
—~
[\
GO
~r

where the parameters are the same defined in Egs. (Ta) and (T8).
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o original node position @ node position after displacement

‘ tn+4 | tn—i—Z‘
snl ~n
WAL N wah
=v T 1L
N J._'l'a '[';n'_!_l
Ar;‘ .TZ xlTl
. . n
A D l\ — t
K n *
t¢m2 Y '\Tu At
| v d 5 | n—1
L1 t
L Ti-1 Ti  Ti41
x
(a) SL2: Eulerian framework. (b) SL2: ALE framework.

FIGURE 6 O -dimensional space-time stencils representing the second-order SL scheme for varying time step in two frame-

works: Eulerian and ALE. The point x;’. is found with a backward integration that uses the extrapolated ALE velocity cnt1/2

G

1€ exlidpolaled Al.E VEIOCIL

to determine the first disnlacement vector at ' and comnblete the first stace of inteoration. For the second stace. this nrocess 1is|

O GCLCTIIINC U1C TS GISP1aCCmCIt VECIOT at 7 allG COMPICC UlC ISt 51adl Of 1ICZratiOn. O ulC SCCONG Stage, s ProcCess 15

kemmantad kit nevo v e farnd with o hankbward integrationn whoce dicnlarcment vactor mavee hanls avar tura te ctene Tn thid

LHcpcatcd, vut 11ow J&d 1> 10Ul WIUl d DALRwdlU HIICETAUVIT WUSC UlSplL CIHICIIL VOCLLUL HTTUVEDS DAUK UVEL WU LT SLOPS. 11 UILLY)
1 rr“

latter suuauon the VClOCl[y used to step back is the ALE V€10€1[y c’.

a

e update of the advective transport occurs in two steps
as well. Firstly, u/) is interpolated by using the velocity field at #"; secondly, u/; "=1 is interpolated at t’“1 but with those nodal
velocities stored at t". This way, the ultimate advection is updated toward ¢"*! by averaging u’, and u/}” !"as shown in Eq. (20).

domain

departure point X

departure point X/~ 1\
[ S—— S— |

departure velocityu’; !

Q

point X;

FIGURE 7 Methodology of nearest node direction illustrated in an unstructured mesh of triangular elements. In the SL2 scheme,
the algorithm searches for departure points over two element path patches. Elements shaded in light gray contain either the arrivall
node x"Jrl (fixed mesh) or "+! ( moving mesh), which matches the mesh node x;, or the departure node. In this illustration, the|

[
.felocﬁy u’, at the departure point X7, is interpolated by velocities at the nodal indices j, j + 1, and j + 2., whereas the velocity|
=L ot tha donarture noint 71 ic internolated by veloeities at the nodal indices b k41 and L 19
le al uiv Ubl}al wur l}UlllL Ad 15 1 1u,1yuuuuu U VUIUULILULDS Al UL vual mmuived vy v T 1, allu A T 4.
V76 | Tmnlamantation cynangig
| @ 1 l.llll.'l\/lll\/lllaulalull > llUPDlD
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Algorithm 1 Ist. order ALE-FE Semi-Lagrangian method

el o
1o colipulc

Nn tha ~Athar hand ta imnlamant tha QT D cnhama o 11gn tha fAlla o Qtong:
Il ulv vulvl athu, ww llllylblll\/llt UIv D4 dSuliviliv, WL uduL uiv IUllUWlllé Dl\.zl,lb.
Algorithm 2 2st. order ALE-FE Semi-Lagrangian method
1
. n+- 1
1. Extrapolate the velocity: ¢, * = [(Af; + 2A1,)/2A¢8]¢} — (1/2)c]™
n+>
2. Compute the 1st. trajiectory: X — x" = x"1 — At.¢. 2
SO RS MR S BRI By d a 1%
2. Tntarnalata tha 1ot danartiira valanitye sul — T/l
J. llll.bllJUlal\/ uIv 1oL U\/l)al uile VL/IUL/IL)’. ud _— Llu\A’ }J
/1\ /{7\2_1\ /9_'_11\
4: Compute the 2nd. trajectory: X"~ = (7 ) x4 { — ) x" — ( — ) At,c"
B 7 cod \gz/ ¢ \ 02 4 N9 s
=71

5: Interpolate the uitimate velocity: u/; * =
6: Update the material derivative: d,u"* = dyu’ — d3u3_1 + At Fy(t", Ar, Eo,f,g, dy, d3)

-

T 41 1 4 4 T san A n~ 1 7N : r i 1 1: 00 . Il fe x} ~Qr o1 r 4 m, 1.1 :
in tne iast step, 71", Ar, L.o,1, g, d,, d3) 1S a4 ZeNeriC runcuondl dUiering 1rom /-y oI SL.1 1n 4 Iew LCImSs. 14DIC |1| Sumimnarizes|

Hlan Frrim Aamrnntal 1nfrina
LT Lunualiiclital 1

TABLE 1 Summary of parameters and values used to implement the semi-lagrangian integrators SL1 and SL2 in constant and|
varying time steps.

semi-lagrangian displacement constant time sten varving time sten
t=1 t=1 i o | J t=1 r
scheme vector coefficients coefficients
@, @) @) d, d, ds d; d, d;
Cr 1 ANA+ n n 1 1 n 1 1 n
o) Ub § Li Hll v v i i v i 1 v
4l [(At) + Aty)? — AP (At + At,)? Af
nt3 1 1 2 1
SL2 0 ¢, *Aty 2clAt; 372 2 172
Aty(At, + Aty) Aty(At, + Aty) At (At + At,)
3 | RESULTS

We now present a series of numerical simulations of single- and two-phase flows based on the SL1 and SL2 schemes on the|

IALE framework. Al the tests presented next were carried out using the same configurations for remeshing criteria, time step,|
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The following test cases were focused in two-phase flow systems, where the interfacial dynamics plays an important role. For

such tests, a variabie time step has been chosen according to the foliowing constraint:

where p is the average fluid density between both fluids, Eo is the E6tvos number as defined previously and 4 is the mesh|

characteristic length. Since both interface and background meshes move with respect to the ALE velocity, a constant time step)

MTho ricing of a co ad qincle air hiibhhle in canieroge coliition 1i¢ invegticatad and comnared to the wall_knao roanca avt
ruv llDllls Ul a vulliiiavu 011151\/ all UUUUVUILUL 111 DULl1luUdL dvliuuuvll 1d lllV\/Dle(,lL\/U ailu bUllll](,ll\/u LU UIv WUILITALIUV 1uvlduvlviIive LINUCAL,
we analyzed bubble’s center of mass, liquid film thickness, and bubble shape for both integrators. Finally, the rising of a single

air bubble through a periodic constricted channel is simulated. Dynamical system techniques are undertaken to evaluate stability|

and accuracy of the method’s responses.

advection_di 1on aqgnation hu neing the QT /EEM annraoach Thae dimencionlace form of the eanation in (Cartagian conrdinatag
auvuouiuviiTuliiiudsivil \J\iuull\}ll v UDJllé Uiv L1 141Vl ul}lJlUu\-/ll. LIV ULILLIVIIDIVILILIIVOD 1Vl 11l VUl ulv \J\iuullull 111 Cdliluvdldll vuuvlLuliiawu)|
is eiven by:
1S given by:
oy (x, y) I
> 2
+c-Vy(x,y) = Vay(x, y), (30)
Jat e

ksl mzen 2ol v 25\ 1o tlan canla £.14 D, ic #lan DA Tt izl nce Ao 1o I G 1 2ty Titncantazan il il S0 cnk e~ D, . 1TNONNN
wnere y(x, y) 18 tne scaiar neid, /e is tné reciet numoer Cominoily aelined in tne nterature, wnicn is set to0 e = 1UUUU,
thorafore reducing the diffiicion effect Tn thic cace the convective velocity ¢ — v — ¥ 1¢ not comnuted TIngtead it i¢ nregeribed
Liviviviv l\./\.lu\-/llls UIV ULITUDIVIL VIIVULL, 111 ULID Ldady, uUIv Luldlvuuvuvue vuluulilau v — Vv ¥ 1D 11UL LVlLLIpuiLvu. LllDL\.{“u, i 1o l}l\./D\dllU\./u

assess the solution produced by SL.1 and SL2 schemes, the mesh velocity v = 0. That is to say, the solution of the convection is
purely conveyed by the SL term.

For these simulations, we considered an unstructured triangular mesh having 109510 nodes and 24230 triangular
(cubic) elements. We have also tested a finer and coarser meshes and verified that the same error trend is noted.

By choosing the total simulation time " = 2#n,,, — where n,,, is the number of revolutions — and time step size|

v

]

At = T /200, two complete rigid body rotations are carried out with n,,, = 2 within niter iterations with niter =
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using
.= /A Y(x, y)x dA 31)
T [ W(x, y)dA ©Y
JA T\ )8
3.1.1 | Gaussian function
In this test case, the initial scalar field is given by the Gaussian function
( 1[/x=-u\> [(y=-m\T1)
(x,y) = Aexpg = || )+ ) | ¢ (32)
U 4L\ o J \ o /1)

y
1 a a: 2 2 N oA
0 dnd o7 drc variances correspondaing o e x and y di rCQUOH rt:bpculVCIy We sei U; = U; = V.04, as UCp]LlCU n lHC l"]g l
raqulting inw — [ 4 2Q408 sv 104 § NNSAL se 1011 aq far ite contor of mace Thae nuimerieal domain e a cirele with diametod
lbbulllllé pusy Ac — 1 T. 00770 A 1V s J.UUIUTU A 1V J ad 1UL IS LULILLL UL 111AdS. 11U 1ulliviival uulliallil 15 a vilvliv will ulallivivl
h = 2D where D = 1 1g the non-dimensional reference diameter A homooeneous Dirichlet condition w(x. v) = 0 was imnosed
@ L0, Wnere IV 1 15 Ul NON-GHMensiona: reiCreice Glamceicl. A nomogencous Parciucy Condnion ynx, y) v wWas HIpoSsCa

FIGURE 8 Diagram of the simulation domain for the Gaussian function transport. The velocity field is known and imposed by
v(x, y) = (y, —x). Therefore, a clockwise rotating flow is achieved. Two full rotations are exhibited during the simulations.

A more challenging test case is presented next. Again, the transport of the scalar field y(x, y) is investigated along with a complex|

fiuid motion. The Zalesak’s disk is used to evaluate the correctness of the transport mediated by SL1 and SL.2 schemes. The|

PSRN D) I, S IR T DU LIS JE S 5 R B 1 R SRR PR, IEPIL SIS » SIS e Y0V Yo Wit £ (RUNSRER. TSR LN L
2C0INCUY O1 UIC £4aI€SdK S UISK S110uld 1dcdlly remadin COnstdiit witll ume, Since € = 1VVLU. rnowever, auc 1o disCreuZduon Crrors|
i haoth anace and time artificial diffucion mav annear and deteriagrate the dick’c aricinal chane hyv deforminge it aanecially due ol
111 00Ul Space ana ume, aruiiCidi Giitusion may appear ana GeiCriorat uif GisxK S Origiiidr SiiapC Oy GCIOrmiing it, CSpeliairy Guc o,
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8 107} A |8 i A :
= SL1-Eulerian —o— ® 104 L SL1-fixed —=— | ]
= SL1-ALE ---o--- . SL1-ALE ---0---
3| SL2-Eulerian —=— | | SL2-fixed —=
10 SL2-ALE ---e-- 100 ¢ SL2-ALE - |{
- 1st. order 1st. order
4 . 2nd. order ------- 5 ond. order -------
10 ; ; ; ‘ ‘ 10 : ; ; ‘ :
0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10
time step dt [-] time step dt [-]
(a) (h)
&) \vy
ETCTIRE O Numerical arrore gver time comnuted aftar 2 ravoliitiong of the GGanggian nraofile tact for ST 1 and ST 2 cchameg: (o)
MU AT U ANLY 7 INUllIvliivadl L11uld Uvuel uliuav \/Ulll}JuL\aU allvl 4 1VVUIULUVULILID VUL uIv uaudsdiall lJlUlllL/ LUOL 1UL UL/l Aallud Olua SVLIVILIVY. \a))
trajectory error; (b) area error
| PR [FRNRn |E.| R (S S M RS ) RIS R SR N [ . R PRI . SR § A 2AQA0E v 1N—4 & NNEANL
oullddly CONuiuons 101 e provicCIll. INOLC Uldl Wil U1€ p1oposcu gcotculic Colgulduoll, X, = {—4.50479 1U -, 0.Uv040 X
_ 11 3¢ found to he the cantar of mace Aq geen the Zalacak’c dick 1q¢ defined ag a cirele with rading R — N 20D qlatted by a
4 15 1VuluU WU UL UL LUIvl UL 1HAdS. A dLudl, UL Zudivddi O UIDA 1D ULlllvu dad a viiviv will 1dauius In — V.JuULV sivuvu v a
rectangle measuring 0.12D X 0.20D. The same parameters as those for the Gaussian function are replicated here

[FIGURE 10 Diagram of the simulation domain for the Zalesak’s disk transport. The velocity field is known and imposed by
v(x,y) = (, —x). Therefore, a clockwise rotating flow is achieved. Two full rotations are exhibited during the simulations.

Figure [[T] presents the numerical error for both integrators for the Zalesak’s disk test. Likewise, SL1 behaves as a first-order
time scheme, whereas SL2 is second-order time. A qualitative comparison for the Zalesak’s disk test case was also included in|

Fig. The solution of the SL.i scheme for the final simuiation time ¢t = 200At after two revolutions shows a non-conservative

tha narticla’q tratantary hy tha QT 1T mathad On tha athar hand tha T 2 intagratar wag ahla ta radiice afficieantly tha niimaerieal

e l}ﬂ,l ULvIv D udadjvviul U uliv /1 1UvUIVUL. UL UIv Uuldul Laliu, uiv oLaL llll\./sl alvul vwdd duUiv WU 1vuuLy villiviviiu UiV luluvliival

dissipation (Fig. (12h) for hoth departure velocities n" and v~ Conseguently, the mass is hetter nreserved in this scheme, ag
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FIGURE 11 Numerical errors over time computed after 2 revolutions of the Zalesak’s disk test for SL.1 and SI.2 schemes: (a)
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the SL1 scheme the convergence error is found to be linear for the area error

LIdJCLLUI)’ €ITor, [U) area error. As can be seein, 1n

a
and sub-linear for the trajectory error. On the other hand, the SL2 scheme presented second order of convergence in the area
error and sub-quadractic order of convergence for the trajectory error.

expected. In the current test case, the convergence error for the SL1 scheme is found to be linear for the area error and sub-|

linear for the trajectory error. On the other hand, the SL2 scheme presented second order of convergence in the area error and|

sub-quadraiic order of convergence {or the irajeciory error.

(f) t = 50A¢ (g) t = 100A?

FIGURE 12 Comparison snapshots of Zalesak’s disk profiles during revolutions impelled by the rotation fiow for several simu-
lation times within 200 iterations. First row: scalar blob approximated by the SL1 scheme. Second row: scalar blob approximated|
by the SL2 scheme.
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In both scalar transport test cases presented here, both SL1 and SL2 schemes presented a plateau-like behaviour for thel

convergence of error when using iarge time steps dt > 0.1. A iower bound piateau-iike behaviour is aiso found where very smaii

The rising velocity of a single Taylor air bubble in sucrose solution is investigated accordin
In this case, velocity at the bubble’s center of mass and liquid film thickness are evaluated for both integrators (SL1 and SL2)
to compare their performance, accuracy, and correctness. The chosen two-phase system is sucrose solution as suspending fluid|
with density p,,, = 1172kg/m? and dynamic viscosity u = 5.65 x 107%Pa - s, and air with density Pout = 1.789kg/m?, dynamig
viscosity g = 1.225 x 107%Pa - s. The dimensionless numbers were set to Eo = 30 and Mo = 1077, thus resulting in the
Archimedes number Ar = 519615. The air bubble flows along the channel while a thin liquid film fills in the gap between the|

wall an the bubble’s lateral surface, thus preventing gas dry-out. Simulations that represent the liquid film thickness correctly

sionless diameter D = 1. The total channel length is 20 D wide and the bubble’s nose is placed at z = 16.4D. The initial bubble’s|
length is 5.1 D. From the initial liquid film thickness of §, = 0.12D, we monitored its evolution with time for purposes of com-
parison. A moving frame reference is adopted here to simulate the rising motion of the bubble, i.e. its center of mass remains
fixed in space, whereas the axial velocity at the upper and right boundaries are constantly updated as a function of the bubble’s

axial (rising) velocity.

r —.
gravity
g Y
- o ¥ 5, =0.12D
a liquid phase ( gas phase
n —
T 112N T £ 1N T 2 41 T z
l 11.0L | J. | J.9u |
IFIGURE 13 Schematic representation of the domain’s geometry and initial air bubble’s location for the two-phase flow of a
ricino Tavlar air hithhle
rising Taylorair bubble.
Fignra w chawe tha tamnaral avaliitinn af valacity ot tha Tavlar hithhla’q cantar af magq foar hath tfima intagratinn echamag
i 15u1u A7 D11V VDO ulv lblllt}ulﬂ,l Cyuluuvll vl vuluuilL dl Ulv 1dYylUul UUUUIL D Luldilvl Ul 111dddD 1Vl UULLL uluv llll\./él(,llJUll OULIVILIVD)
SIL1 and SI.2, In gspite of its highly transient behavior from the initial bubble’s shape to its terminal shape, both schemeg
I g i it
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present approximately the same solution, resting nearby the final dimensionless terminal velocity v,,, = 0.305 according to the]

experimental observations by’ after few oscillations in time ¢ < 0.
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Additionally, we present the dynamic behavior of the liquid film thickness for the air/sucrose bubble flow in Fig. [I3] and|
compare it with Brown’s correlation? . Oscillations for § are perceived from the threshold ¢ ~ 4 within the range [0.05, 0.06].
From ¢ = 9, the thickness practically stagnates around 6 = 0.058 for both integration schemes. No significant improvement was
verified for the evolution of the liquid film thickness regarding the second-order scheme.

[ o TS TR iy TG BC ) SIS T T,
1

B S . ~ 1 4 2 1A S a1 T £
1€ DUDDIC § ermindl snape at I = 14 1S prescnica 11 rig. 101

3.3 | Motion
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This simulation considered Mo = 107" and Eo = 40. The liquid film thickness is compuied by using both the SL1 and SL2
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by as benchmark. They used the following wave equation to model the corrugations
n+l ST | 2_75, ntly o | (33)
wall b + | 2 x+ xref) <PC | ’ (35)
L d
where D is the channel’s dimensionless diameter, A is the wave amplitude, A is the wavelength, and ¢, is the wave phase

The axial coordinate is x, while x,, , refers to the bubble’s referential position. Bubble’s center of mass remains fixed in space]
and its referential axial coordinate x,,, is incremented each time step n with the axial rising velocity of the bubble u,,, as
= m, + u,,, dt. The initial referential coordinate is set to xV = 0. The new boundary node position rﬁt}, is computed

every time step as a function of the bubble’s referential coordinate. In this test case, the dimensionless numbers were set to

Eo = 16.97 and Ar = 11174. The dimensionless fluid properties were set to p,, = 1.225, p,,, = 1350, u;, = 1.78 x 1073

N oA N Nmo A o 1 n—5

Mo = V.U4, 0 =0.U/0, thus resultlng in the Morton number Mo = 3.92 X 107"
: ~ 1 e a e atis ramracmitatiman AF il o Ao o T e Cel LT T s L e L O A ot
rlgulc rings a scnematic representation o1 tne€ aomaiin and 10cation o1 th€ bubdDIe. 1n€ moving Irame approacn 10r aynaimnici

hanndarias datailad in? wac 1naead hara ta caomnly with tha naad far o larga niimarical damain Thite tha hiihhla’e cantar v ig
vuvuliudalivd uvialivu 111 ywdad uduvu liviv WU LVUlLLIpL VViull ulv 1iveu 1vl a lalé\, Huliiviivdal uvilliiaiii 1 11ud, UIv vuuvvulv 5 Luldiwvl AC 1)
placed at the coordinates (0.0, 5.2) and remains fixed in space. The top wall moves according to Eq. (33). Such approach id
F [ [ g tRLSK| Py
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similar to that of a fixed frame reference where the bubble 1s constantly moving in the opposite gravity direction. As seen, thel

bubble shape was initialized as an axisymmetric shape and its center was located at the coordinates (x,, z,) = (0.0,5.2D) to

waq comnitead ag a fiinction of the »» narameatar and the channal diameataragc B — 2 N /D In tho crirrant cimulation . — 0 Q5
wdad LUILLIPULLU dd d 1ullvuivull vl uiv ’\d P“l dlllvivi dliu ulv viidliiivi yidliivivi as l\d _ ’\d U/ 4L 111 U1V CULLIVLIL dludialivls, l\d —_— V.JJ
Therefore. the bubble’s diameter is 95% of the channel’s diameter. In Ea @ we get = 0.18 = 4. and b = 628
iherefore, the bubbie's diameter 1S Yo7 of the channel's diameler. In EBq. , We set A V.16, 4 +, and Q. 0.20

Practically, the phase represents the relative position of the bubble and the channel and does not affect the flow dynamics once
the periodic flow is reached. The bubble’s center mass axial velocity v, is used as a reference to move the top wall by updating
n+1

' at every time step with the motion equation z"Jr,l =zl . +tv, dt

ref
ref

D [2n
prtl = 5t Asin| (z+ 2"%,1 — ¢e)
&~ L N

raA wall = By e ] \\
— e gravity

s s T~ N — —
2 ‘ liquid phase gas phase —/ \fta = kD2
>
\ xc = (0.0,5.2)D z
numerical domain lenoth: D
. umerical gomain length: 31 R
< >
chematic renresentation of the domain’s ceometrv and initial air bubble’s location for the gsinele dron risine alonod
U Uil CNCmauc represéntation o1 tin€ Gomain s geomery ana initid: air duooiC § 10Catdn 101 wie Singi€ Grop rising aiong

In Fig.[T8] we present a detailed comparison involving bubble shape variations. At the top-left, the evolution of the perimeter
ratio P/P,,;, is measured, where P, is the initial bubble’s perimeter and P the bubble’s perimeter along the length L. of the

corrugated channel. This piot shows that the SL.Z method captures shape variations underwent by the bubbie more precisely|

notnatinng annaaringinNQ ~ T~ 1 Nmoan that hithhla’g intarfara hanneag ara hattar dagerihad hy QT ) thaon QT 1 Maranvar
musviLuauauviid a tlhulllls 11 v.7 J_lc 1.V 11ivdll Uldl UUUVUIU D 111Vl ldave UUuUlLILvLD dliv UvLlvl uuodviliilivvu v Diio ulall oia1. LVlUl\JUV\Jl’
we note a lagging behavior of SL1 in relation to SL2 as for the curve’s peak, which occurs close to L, = 0.705 in the first

in conserving mass. Since there is no disturbance strong enough to yield a breakup, the bubble undergoes the compressing effect
induced by the channel’s motion, slightly rebounds, and finally tends to the equilibrium while preserving its shape.
As a way of verifying the implementation of the integration methods in detail, we plotted a phase diagram in Fig. [19]that

relates bubble’s perimeter ratio P/ P,,;, and the bubble’s center of mass. Under the current test conditions, the orbits for both)

e convergent section of the channel, In
bl

1en th 1 valks tnrougn tn 1V n ! 1
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FIGURE 18 Comparative plots of the SL1 and SL2 methods for the case of the single bubble rising along a corrugated channel.
Top-left: profile of the rising bubble’s perimeter ratio P/P,,, at one corrugated length L . Top-right: zoomed view of the
corrugated length within the range 0.75 < L, < 0.83 highlighting the bubble shape evolution with time. Bottom figures: bubble
shape at r = 37.21 and ¢ = 38.30 for the SL.1 method (left); at # = 37.21 and ¢ = 40.97 for the SL2 method (right).

the periodic motion of the velocity profile at the bubble’s center of mass is shown for both methods. As seen, the wave phase

111 1 QT N a1

alscrepdncy as well as the presence of some small perturoauons aurlng bubble’s deceleration Cdpture oy dSL.2 method pOiIlt 1o
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FIGURE 19 Phase diagram relating the bubble’s perimeter ratio P/ P,,;,, and the bubble’s center of mass. Stable orbits show|
well-defined limit cycles for both SL.1 and SI.2 methods and absence of chaos, thus verifying that the numerical code reproduces|
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FIGURE 20 Temporal evolution of the velocity at the bubble’s center of mass comparing the SL1 and SLZ methods along three|
corrugated lengths.

particular, the SL2 method present elevated peaks close to t = 20, 40, 60, 80, whereas the SL.1 presented them att = 19, 38, 58,77
with lagged phases. The final number of mesh nodes and mesh triangular elements for this simulation were 89933 and 19944,

respectively, for the SL1 scheme, and 92926 and 20185, respectively, for the SL2 scheme.
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FIGURE 21 Evolution of liquid film thickness with time for both first- and second-order time Semi-Lagrangian methods for
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the case of the single bubble ascending through a sinusoidal channel
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4 | CONCLUSION

In this paper, we introduced a second-order time semi-lagrangian scheme to deal with advection dominated flows that works in|
combination with finite element discretizations and abritrary Lagrangian-Eulerian frameworks. We demonstrated the method’s|

capability to simulate flows with constant or varying time steps.

Secondly, the robustness of the method in capturing dynamic features of dispersed elements in two-phase flow configurations|
was verified through a series of simulations involving classical benchmarks of rising bubble and drop flows in different solutions,|
Liquid film thickness, terminal shape, trajectories and velocity were seen to vary in a few cases. In particular, the new second-
order time method can detect bubble shape fluctuations with more precision than its first-order counterpart.

In particular, the new scheme bypasses negative damping effects yielded by the first-order scheme that deteriorate the dynamic

motion by highlighting the physical behaviour of bubbles and drops with detail. We also underlined the features of the method|
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implemented for three-dimensional flows straightforwardly with similar expected results
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