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Abstract

The present work aims at developing a new flexible computational frame-

work to simulate macro and microscale two-phase flows with dynamic bound-

aries. Such a technique is extremely useful for periodic and very large domains

which requires exhaustive computational resources, consequently reducing the

required numerical domain. In this article an interface tracking Finite Element

(FE) method is used to solve the equations governing the motion of two im-

miscible incompressible fluids in the Arbitrary Lagrangian-Eulerian framework

(ALE). The equations are written in axisymmetric coordinates, however the

proposed moving boundary technique can be easily extended to 3-dimensional

flows and other methods using the ALE framework such as the finite volume

method. The two-phase interface separating the fluids is a subset of the domain

mesh, therefore a layer of zero thickness is achieved assuring sharp transition

of properties among phases. At the scale of interest, surface tension plays an

important role and is thus considered in the flow equations. Several validations

and results are presented for gravity dominated problem, including the sessile

drop test and rising of spherical and Taylor bubbles, as well as the divergent
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and sinusoidal channels, showing accuracy for modeling two-phase flows in large

periodic domains.

Keywords: Arbitrary Lagrangian-Eulerian, Finite Element method,

Two-phase flows, Surface tension, Rising bubble, Corrugated channels

1. Introduction

Two-phase flow occurs frequently in nature and in industrial applications.

This is for instance the case in the refrigeration industry, blood flow in biological

systems or lately in the cooling of computer chips and power electronics. Two-

phase cooling systems are usually superior to single-phase cooling systems, due5

to the fact that for most materials the latent heat of vaporization is one or two

orders of magnitude higher than the thermal capacity of the liquid. The devel-

opment of design tools for two-phase microchannels is becoming an important

area of research. However, experiments are difficult to perform to investigate the

dynamic nature of these flows because of the very small scales [1] and numerical10

simulations offer an alternative way to study such flows usually at a much lower

cost. Therefore, the development of numerical methods able to simulate such

flows in details is an important research tool.

The Finite Element Method (FEM) opens new ways in both interface track-

ing as well as interface capturing. Space time methods [2, 3] use finite elements15

to discretize both the spatial and time domain. They thereby allow for another

kind of interface tracking where the deformation of the computational mesh is

automatically included in the problem formulation. Meanwhile the eXtended

Finite Element Method (XFEM) is ushering in a renaissance in Eulerian (fixed

grid) two-phase flow. The XFEM is based on the idea of adding extra degrees20

of freedom to the fixed mesh problem, which are interpolated by discontinuous

functions inside elements traversed by the interface. However, the XFEM ap-

proach suffers from ill conditioning of the associated discrete linear operator,

which makes the solution of the linear system a more complicated task [4].

In two-phase flows, two main categories of modeling are available, namely25
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‘one-fluid’ and ‘two-fluids’ formulations. The former uses one set of equations to

describe all the phases and it is assisted by a color function, which defines their

regions in the domain. The latter describes each phase as a separate fluid with

its own set of governing equations, thus requiring an additional mathematical

formulation for their coupling. Within the ‘one-fluid’ formulation, the interface30

description may be divided in two sub-areas, namely Eulerian and Lagrangian

descriptions. The basic difference between both methodologies is reflected on

the modeling of the interface between the phases. For instance, the Volume

of Fluid [5] and the Level-Set [6] methods are Eulerian methods. Improved

coupling methods have also been used to simulate microscale two-phase flows35

[7]. On the other hand, the Lagrangian formulation describes the interface

between fluids explicitly by computational elements. Such a description allows

a sharp representation of the interface, but its drawback is the proper treatment

of topological changes in the interface, since coalescence and break-ups are not

inherent to its methodology.40

Due to the shortcomings of purely Eulerian and purely Lagrangian formu-

lations, the Arbitrary Lagrangian-Eulerian (ALE) description allows these two

frameworks to be combined in one single formulation, thus the best benefits of

each approach can be brought together, that is, the computational mesh nodes

may move with the continuum in normal Lagrangian fashion, to be held fixed45

in Eulerian manner or somewhere in between the Eulerian and the Lagrangian

description. The ALE description has shown to be suitable to describe fluid flow

problems (see, for instance [8]) and this work extends its capability to two-phase

gravity driven flows in axisymmetric coordinates with moving boundaries.

The interface tracking methods require constant remeshing to handle cases50

where the motion of the interface leads to strong mesh deformations. Remesh-

ing comprises the handling of mesh connectivity and inserting/removing nodes

in zones where the accuracy may change. Therefore, after the remeshing pro-

cess, an interpolation is strictly required to project the solution onto the new

available mesh. This interpolation leads to additional numerical errors, which55

are usually of diffusive nature. Some authors propose changing only the connec-
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tivity, e.g. by swapping edges or performing operations locally to avoid global

remeshing [9]. However, these techniques lead to frequent insertion/deletion

operations on vectors, which typically require doubly or single linked lists to

perform better and may become less efficient than global remeshing. Moreover,60

[10] has continued the implementation of moving mesh technique to tackle bub-

ble merging and breakup in multiphase flow simulations with an extra mesh

adaptation criteria. Simulations of droplet pair collision is also shown. In [11]

it is shown for some simple academic problems that remeshing at every time

step can be more accurate than using an ALE scheme without remeshing. This65

is due to the fact that remeshing allows the mesh resolution to be increased by

adding more points to the mesh. This can be used dynamically to refine the

mesh in regions where refinement is needed and coarsen the mesh elsewhere.

In [12], a high-order ALE schemes for incompressible flows are proposed for

spatial discretization problems with moving boundaries. Several finite element70

were tested, showing accuracy for the proposed result of the sliding droplet. A

vascular tumor growth has been modeled with a moving mesh approach in [13]

using two different velocity-based methods applied to a two-phase flows, while

in [14] and [15], the ALE method coupled to the finite element method has

been applied to the study of insoluble surfactants, showing that in moving mesh75

context, complex physics can be successfully understood. Several moving mesh

methods has been investigated in the extensive review article of [16] including

nonlinear test cases, porous media and thin film equations and two-phase flow

problems. In [17], five mesh-based tracking methods were compared for fluid

flow applications, including free-surface flows.80

In this work an accurate interface tracking method with moving boundaries

is proposed in the context of the Arbitrary Lagrangian-Eulerian Finite Element

method, which captures bubble/wall effects and handles cases with large ratios

in physical parameters and interface deformations. By a sophisticated motion

of the mesh points, this method reaches a detailed description of the interface85

at any time, while avoiding the strong mesh distortion of purely Lagrangian

methods. Adaptive mesh refinement and remeshing are used to keep high qual-
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ity mesh elements. An efficient way to compute the curvature and the surface

tension term. This work is an extension of [18] where we propose a new moving

mesh treatment to handle efficiently moving boundaries domains for two-phase90

flows in large and periodic domains. Numerical validations against exact so-

lutions in axisymmetric geometries are presented as well as several results for

rising of bubbles and drops with different fluid properties in challenging geome-

tries.

This article is organized with an introduction of the moving boundary tech-95

nique and the corresponding literature review, followed by the mathematical

formulation using the equations in axisymmetric coordinates. Thus, the Finite

Element Method is exposed as discretization technique to the mathematical

equations followed by a section with all required mesh operations used in this

work. Next, the result section shows several test cases to validate the proposed100

moving boundary methodology including rising in slowly divergent channel and

a corrugated channel with experimental comparison. Finally, this text ends with

conclusions.

2. Equations in Axisymmetric Formulation

The classical description of two-phase flow is based on the governing equa-105

tions of continuum mechanics of flowing media or hydrodynamics. These are

the incompressible Navier-Stokes equations including surface tension in axisym-

metric formulation, which are presented below in non-dimensional form:

ρ(x)
Dv

Dt
= −∇p+

1

N1/2
∇ · µ(x)

[
∇v + ∇vT

]
+ ρ(x)g +

1

Eo
fst (1)

∇ · v = 0 (2)

where ρ(x) and µ(x) stand for the density and viscosity of the fluids in the

numerical domain as a function of the position x occupied by the fluid, where110

x is the coordinate vector in the axisymmetric space defined by the axial x

and the radial r coordinates. v is the velocity field with axial u and radial
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v components, t represents time, p pressure, g is the gravity vector and fst

represents the surface tension force. The gradient ∇T and the divergence ∇·

operators are defined in the axisymmetric formulation as:115

∇T =
[ ∂
∂r

;
∂

∂x

]
∇· =

[1

r

∂

∂r
r;

∂

∂x

]
(3)

The non-dimensional numbers Archimedes (N) and Eötvös (Eo) are both

defined as:

N =
ρ20g0D

3
0

µ2
0

Eo =
ρ0g0D

2
0

σ0
(4)

note that the above non-dimensional numbers are achieved by using the standard

reference parameters when the velocity of the system is unknown, thus replacing

the common non-dimensionalization v∗ = v/U0 by v∗ = v/
√
g0D0 and x∗ =120

x/L by x∗ = x/D0, where U0, L, D0 and g0 are referential parameters of

velocity, length, channel diameter and gravity (g0 = 9.81m/s2) respectively

and ∗ stands for the non-dimensional quantities. The referential parameters

are selected to be those for the liquid phase. Additionally, the non-dimensional

Morton number (Mo) is defined due to its importance to characterize the shape125

of a bubble or (drop) and the relative effect of the viscous and surface tension

forces, where σ0 represents the referential surface tension:

Mo =
µ4
0g0
ρ0σ3

0

=
Eo3

N2
(5)

The material derivative Dv/Dt is represented in the Arbitrary Eulerian-

Lagrangian framework as follows:

Dv

Dt
=
∂v

∂t
+

(
v − v̂

)
· ∇v (6)

where v − v̂ is the difference between the fluid flow velocity v and the mesh130

velocity v̂. In the ALE context, the mesh velocity v̂ can be chosen arbitrarily

and suitable to different flow situations. If mesh velocity v̂ = 0, the Eulerian

framework is achieved, while if v̂ = v, the Lagrangian framework is obtained.
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An arbitrary framework is set whenever v̂ ̸= v or v̂ ̸= 0. Note that in the pro-

posed formulation, the nodes at the interface between fluids are always moving135

with the fluid velocity in a Lagrangian way, since it is explicitly defined by a set

of mesh nodes. Moreover, an Eulerian method for the advection term is required

whenever the arbitrary framework is achieved. In this work, a Semi-Lagrangian

method is therefore used to discretize such a term. In the following section the

discretization of the interface between fluids is detailed as well as the modeling140

of the material derivative.

2.1. Surface Tension Force

According to [19], the non-dimensional surface tension force can be modeled

as:

fst = κnδ (7)

where κ stands for curvature, n is the normal vector and δ the Dirac delta145

function which converts the surface tension force to a volume force. Note that

in this present work we only consider constant surface tension, therefore the

surface tension coefficient is embed at the Eötvös number Eo.

In 2-dimensional space, the mean curvature κ can be locally calculated from

the variation of the normal or tangent vector along the curve that defines the150

interface. Such a definition is derived from the Frenet ’s formulas ([20]) and it

is written as:

κ2dt = −∂n
∂s

or κ2dn =
∂t

∂s
(8)

which represents the continuous description. In the axisymmetric case, a 3-

dimensional curvature should be taken into account, which is the sum of the

2-dimensional curvature κ2d represented by Eq. (8) in the x − r plane and the155

curvature of the axisymmetric component κaxi which is associated to the axis

of revolution, and simply related to the angle ϕ between the interface normal

vector and the distance to the symmetry axis R written as:
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κaxi =
sin(ϕ)

R
(9)

The total curvature of the axisymmetric form in the continuous description

is then given as the sum of both curvatures:160

κ = κ2d + κaxi = κ2d +
sin(ϕ)

R
(10)

2.2. Boundary Conditions

Appropriated boundary conditions are required to find the particular solu-

tion of the partial differential equations presented above for the solution of the

two-phase flow systems. Since geometry and the flow variables are assumed to

be independent of the rotation angle θ, a symmetry boundary condition of165

v = 0 and
∂u

∂r
= 0 (11)

is required on the symmetry axis (r = 0). Moreover, the no-slip condition is

used at the walls where u and v are set to zero velocity. In rising bubble test

cases, the bubble is fixed in space, while the domain is moving with an Eulerian

velocity, therefore the walls are also moving backward with the bubble’s cen-

troid velocity, thus a slip condition is required at non-symmetry walls. This is170

achieved by subtracting such a bubble’s velocity to the walls. Eventually, pres-

sure is explicitly prescribed by setting it to a referenced value p = 0 to facilitate

the solution of the uncoupled system, which will be explained in the following

sections. An additional boundary condition is required for the curvature calcu-

lation of the two nodes lying at the boundaries in the presented axisymmetric175

flow solver. In this work, we have computed curvature for those nodes consider-

ing the reflected neighbor nodes at the boundary, and thus computing curvature

geometrically using the above method.
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3. Finite Element Method

3.1. Weak Form of the Navier-Stokes Equations180

Applying the Galerkin method to the Navier-Stokes equations in axisym-

metric coordinates, one has to find velocity v with components v = (u, v) and

pressure p both ∈ UuD
× VvD

×Q such that

m

(
ρ
Dv

Dt
,w

)
+ k

( µ

N1/2
,v,w

)
+ g (p,w) = (ρg,w) + (

1

Eo
, fst,w) (12)

d (q,v) = 0 (13)

with v(x, t = t0) = v0(x) (14)

for all (v, q) ∈ U0 × V0 × Q where v0(x) is the initial condition. Additionally,

m, k, g and d stand for the mass, viscous term, gradient and divergence matrices185

respectively. Now, consider the axisymmetric space L2(Ω) for which

∫
Ω

w2 r dx < ∞ (15)

where dx = dx dr. The function spaces UuD
,VvD and Q are defined as:

UuD
:= { u ∈ H1(Ω) | u = uD on ∂ΩD} (16)

VvD := { v ∈ H1(Ω) | v = vD on ∂ΩD} (17)

Q := { q ∈ L2(Ω) |
∫
Ω

q r dx = 0} (18)

The bilinear forms of the axisymmetric Navier-Stokes are then given by:
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m

(
ρ
Dv

Dt
,w

)
=

∫
Ω

ρw · Dv

Dt
r dx (19)

k
( µ

N1/2
,v,w

)
= 2

∫
Ω

µ

N1/2
D(w) : D(v) r dx + 2

∫
Ω

µ

N1/2

w2v

r
dx (20)

g (q,w) =

∫
Ω

∇q ·w r dx (21)

(
1

Eo
, fst,w

)
=

∫
Ω

1

Eo
fst ·w r dΩ (22)

(ρg,w) =

∫
Ω

ρg ·w r dx (23)

d (q,v) =

∫
Ω

q∇ · v r dx +

∫
Ω

q v dx (24)

where D(v) = ∇v + ∇vT . Integrating the viscous stress tensor τv = 2µD(v)

by parts allows for transfer of the derivatives to the test function w. No bound-190

ary term appears because we consider only homogeneous Neumann boundary

conditions for the viscous stress tensor. Therefore, the boundary ∂Ω of Ω is

composed of two distinct regions ∂ΩD, ∂ΩN on which Dirichlet and Neumann

boundary conditions hold respectively:

v = vD on ∂ΩD and τvv · n = 0 on ∂ΩN (25)

Taking the pressure function space with zero average makes the solution195

unique. Otherwise the pressure p could not be determined uniquely, since only

derivatives of the pressure appear in the equations and the addition of a constant

to the pressure would still give a solution. What is usually done numerically

instead of requiring the pressure to have zero average is to fix the pressure value

at an arbitrary point of the boundary domain. Note that the fluid properties200

ρ and µ are kept constant element wise. Since interface between fluids is not

crossing any finite element, the fluid properties are sharply defined at each phase,

not requiring any additional function to smoothing out fluid properties near the
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interface. Once the discretization of the domain is accomplished, the system

matrices are assembled in the classical finite element way and the solution of205

the time dependent 2-dimensional equations in axisymmetric coordinates is then

found by successively solving the linear system in each time step for pressure

and velocity. Due to the strong coupling between pressure and velocity, the

numerical procedure implemented to solve the mentioned linear system uses the

Projection Method based on the LU decomposition, which was first introduced210

by [21]. The aim of this method is to uncouple pressure and velocity and solve

each quantity separately, thus reducing the large linear system size into smaller

ones. In this work, both pressure and velocity linear systems are solved using

a direct solver. The advantage on using direct solver is that the solution of

the linear system is given in one iteration and solved to machine precision.215

The drawback is the need of extra computational resources. For 2-dimensional

simulations our tests have shown excellent agreement between solution time and

accuracy, and it represents approximately 43% of the overall simulation time for

the test cases presented at the Results section.

3.2. Material derivative - advection term treatment220

If one sets v = v̂ to all mesh nodes, no additional method is required to

solve the advection in the Navier-Stokes equation, since the material derivative

is discretized in time and space by:

Dv

Dt
=

vn+1 − vn

∆t
(26)

with the new position of mesh nodes given by:

xn+1 = xn + vn+1∆t (27)

On the other hand, if mesh velocity v̂ is set to an arbitrary value, an ad-225

ditional method is required to solve the remaining part of the advection term

within the material derivative. In other words, the portion of velocity field that

is not solved by Eq. (26,27), should be found by any other Eulerian method.
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There are several ways to numerically tackle the discretization of the non-linear

term v · ∇v, such as the Petrov-Galerkin method as described in [22] and [23],230

the characteristic Galerkin method [24], or even the pure Galerkin method if

simulations are performed with low Reynolds numbers [25]. In this work, the

proposed solution is achieved by discretization of the material derivative through

the semi-Lagrangian method as implemented in [8, 26]. For the sake of com-

pleteness we briefly describe it here.235

The semi-Lagrangian method has its own history dating from the end of the

1950’s ([27]) and the beginning of the 1960’s ([28] and [29]). However, the use

of such a methodology for modeling fluid flow problems came later in the 1980’s

through the work of [30] and [31], in which predominately convective problems

were investigated.240

The semi-Lagrangian method uses the Eulerian framework, however the

discrete equations are written in the Lagrangian framework using an integrating

factor method based on the method of characteristics in which such a factor is

an advection operator. This operator is shifted to a moving coordinate system

from which the next time step quantity is calculated. Let ψ be a scalar function245

in its material derivative representation, given in axisymmetric form as:

Dψ

Dt
=
∂ψ

∂t
+ u

∂ψ

∂x
+ v

∂ψ

∂r
(28)

Note that the axisymmetric form is identical to the Cartesian form. Follow-

ing this description, Eq. (28) may be discretized linearly in time at the point xi

by using an explicit first order scheme:250

Dψ

Dt
=
ψn+1
i − ψn

d

∆t
(29)

where ψn
d = ψn(xd, t

n) and xd is the departure point. In the strong form,

the substantial derivative is calculated along the characteristic trajectory, thus

finding the point xd by solving Dψ/Dt = f backwards in time tn+1 ≥ t ≥ tn
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using the initial condition x(tn+1) = xi.255

In the semi-Lagrangian context, a searching procedure is required to find the

unknown departure points xd in time tn. This procedure may lead to excessive

computational cost if it is not well designed, thus it should be treated with

appropriate care. In this work, this searching procedure is implemented using

neighbor-to-neighbor technique as found in [32] that maps each element node to260

the opposite element that shares the same triangle edge. Therefore, using area

coordinates, it is possible to track the path from the current node’s position

xi to its departure point xd using less computational time. In this work, the

semi-Lagrangian method is used whenever the mesh parameters presented in

Sec. (4.2) are not null. In the same way described above, the semi-Lagrangian265

method is used to discretize the material derivative of the velocity field.

3.3. Discrete surface tension force

The discrete first order approximation of the non-dimensional surface tension

force is given by:

fst = κn∇H (30)

where κ stand for the curvature, n is the normal vector defined outward and270

∇H is the gradient of the Heaviside function H, which is equal to one in the

inner phase, zero in the outer phase and assumes an average value of 0.5 for

nodes lying in the interface between fluids. To compute the curvature κ and the

normal vectors n, the interface nodes are used and a set of tangent vectors can

be assembled such that:275

κn =
(t1 − t2)

∆s
(31)

where t1 and t2 are approximations of the unit tangent vectors in two consecu-

tive interface edges and ∆s is its approximate arc length. Figure (1a) shows the

continuous representation of the mentioned formula and in Fig. (1b) the discrete

representation of the 2-dimensional interface is presented. Two interface nodes
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are used to compute the tangent and normal vectors associated to an edge and280

a weighted sum is performed to set these vectors to the corresponding interface

node. The approximate arc length is found by connecting the centroids of each

segment.

(a) (b)

Figure 1: The 2-dimensional Frenet ’s formula for mean curvature ([20]). (a) The continuous

description and (b) the discrete form used in the computational grid.

The axisymmetric component of the curvature is approximated by a signed

distance radius as follows:285

κaxi =
sin(ϕ)

r
=

1

R
(32)

The discrete form of the surface tension for the axisymmetric coordinate is

then written as:

fst =

[
|t1 − t2|

∆s
+

1

R

]
n∇H (33)

In the above equation, the capillary force intensity |t1−t2| is divided by the

approximate arc length ∆s and added to the axisymmetric discrete component

1/R where R is the signed distance from the interface node to the node where290

the normal intersects the symmetry axis, with the sign being positive if the

normal points away from the symmetry axis and negative if the normal points

toward the symmetry axis. In this scheme, the vector n can be determined in

several ways, for instance see [25] for a Level-Set approximation of the normal

vector n. If the interface representation is explicitly defined by nodes, as the295

case of the present work, a more accurate evaluation of the normal vector n
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can be achieved by orthogonalizing the same calculated unit tangent vectors t1

and t2 as shown in Fig. (2a). The nodal normal vector ni is found by summing

the two normal vectors associated to the adjacent edges n1 and n2. The unit

normal vector is therefore computed dividing ni by its length. In 2-dimensional300

space, such a calculation is done relatively easy, since the interface mesh is

always structured and thus the number of neighbors of each interface node is

constant and equal to 2, except of two interface nodes lying at the symmetry

axis. In such a case, the outward unit normal vector is set to be parallel to the

x−axis. It is important to note that the normal vector is only used to evaluate305

the correct direction of application of the surface tension force at the proposed

numerical scheme, thus an accurate computation of the normal vector is not

strictly required. It is, however, a good choice to accurately compute those

vectors since the mesh repair algorithm and the interface motion are carried out

using the normal vector definition. An extensive study about different methods310

for accurately calculate normal vector can be found at [33].

(a) (b)

Figure 2: Normal vector evaluation in 2-dimensional spaces. (a) The normal vector of each

edge may be found by rotating the previously calculated tangent vector by 90 ◦. (b) The

outward nodal normal vector ni is found by summing the two normal vectors n1 and n2 and

the respective unit vector is found by dividing by its norm.

In the axisymmetric formulation, extra care should be taken for the two

interface nodes lying at the symmetry wall. The curvature κ2d and normal

vector n associated to these nodes are simply computed by reflecting the re-
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spective adjacent node in the symmetry axis, therefore creating a ghost node,315

and performing the normal computation as described above for the interface

nodes where the axisymmetric component of the curvature κaxi is zero.

These schemes are compatible with a linear continuous approximation of the

pressure finite element space and, consequently, can be successfully applied to

the non-dimensional Navier-Stokes equations (1).320

3.4. Triangle and boundary finite elements

When the fluid motion equations are solved using the FEM, the spatial do-

main Ω is subdivided into finite elements and the solution is sought in finite

dimensional subspaces of UuD
,VvD and Q. These discrete subspaces are de-

noted Uh
uD
,Vh

vD ,Q
h and they are composed of continuous functions which are325

piecewise-polynomials.

A combination of velocity/pressure shape functions is usually denoted as

PnPm, where n stands for the degree of the velocity interpolation and m stands

for the degree of the pressure interpolation. Particularly for the Navier-Stokes

equations, not all velocity/pressure shape function pairs lead to a stable dis-330

cretization method, thus they must fulfill the so called LBB conditions [34].

Several combinations of velocity/pressure shape functions have been demon-

strated to fulfill the LBB condition.

Figure. 3 displays the finite element used in this work. The linear triangle

element and the quadratic+bubble triangle element which is enriched by an335

extra node at the centroid were used to evaluate pressure and velocity respec-

tively. The boundary linear and quadratic element were used for the boundary

conditions of pressure and velocity respectively. Moreover, the linear triangle

and linear boundary element were used to all mesh operations, therefore once

the mesh is updated to a new mesh, the extra nodes are recreated to form the340

high-order elements. The combination of these two triangle elements generates

the P2bubbleP1 element. The shape functions Ni, as function of the barycentric

coordinates λi, are defined for both triangle elements, in which Ni = λi for the

linear elements and a combination of λi for the quadratic+bubble triangular
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element as follows:345

corner node : Ni = λi(2λi − 1) + 3λ1λ2λ3 i = 1, 2, 3

mid edge nodes : N4 = 4λ1λ2 − 12λ1λ2λ3

N5 = 4λ2λ3 − 12λ1λ2λ3

N6 = 4λ1λ3 − 12λ1λ2λ3

centroid : N7 = 27λ1λ2λ3

(a) linear: pressure,

mesh

(b) quadratic+bubble:

velocity

(c) linear: boundary

pressure, mesh

(d) quadratic: boundary

velocity

Figure 3: Interpolation nodes for triangular finite elements and boundary finite elements used

in this work. The linear element was used to evaluate pressure at the corner nodes and mesh

update, while the quadratic+bubble (enriched by the centroid) and the quadratic boundary

element were used to evaluate velocity at all nodes. The combination of these two triangle

elements generates the P2bubbleP1 element.

The shape functions N b, as function of the barycentric coordinates λb, are

defined for both boundary elements, in which N b = λb for the linear elements

and a combination of λb for the quadratic boundary element as follows:

corner node : N b
i = (2λbi − 1)λbi i = 1, 2

mid edge nodes : N b
3 = 4λb1λ

b
2 (34)
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The matrices of Eq. (24) are assembled with the P2bubbleP1 finite element

and the integrals are evaluated numerically using 4 and 16 Gaussian points for350

the linear and quadratic+bubble element respectively.

3.5. Time step restriction

In the governing equations, the explicitly treated terms lead to a limitation of

the chosen time step size. As mentioned in [31], the semi-Lagrangian method is

unconditionally stable for the time steps. However, we restrict the corresponding355

time step to avoid excessive numerical diffusion, thus the adopted time step

constraint for the semi-Lagrangian term is given by the expression below:

∆tsl <
hmin

|vmax − v̂max|
(35)

where hmin is the smallest triangle mesh edge length and vmax − v̂max is the

maximum value of the Eulerian velocity. On the other hand, the motion of

the mesh nodes depends on the value of v̂ given by Eq. (41) and the time360

step constraint should prevent the nodes from moving more than one mesh

cell, otherwise the mesh is corrupted due to element distortions and collision of

nodes. The strategy of the moving mesh time constraint calculation is based

on the velocity differences and the local mesh edge size, thus limiting one node

to overlap the other or cross the edge of an element. Let us consider p1 and365

p2 as the vertices of a triangle edge h and ∆v̂e = v̂1 − v̂2 as the mesh velocity

difference, thus the proposed Lagrangian time step should be bounded by:

∆tl < min

(
h

|∆v̂e|

)
(36)

Due to the explicit treatment, gravity and surface tension adds a constraint

to the final time step which is related to the wave velocity propagating into the

computational mesh. According to [19] and [35], such a criteria for both surface370

tension and gravity may be written as:

∆ts <

[
ρh3Eo

2π

]1/2
(37)
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and

∆tg <

[
1

hmin

]1/2
(38)

In the above equations, ρ is an average fluid density between the inner and outer

fluids, h is the mesh characteristic length, hmin is the smallest mesh length and

Eo is the Eötvös number as defined in Sec. (2). Thus, the final simulation time375

step constraint may be written as:

∆t ≤ min

{
∆tl,∆ts,∆tg,∆tsl

}
(39)

4. Mesh Operations

In the present work an interface tracking method is used together with node

insertion/deletion algorithms to maintain a suitable mesh quality. Such a mesh

repair is performed in both the 2D domain mesh (triangles) and the boundary380

mesh (line segments) together with a mesh smoothing scheme. Different criteria

are implemented to control the local mesh refinement. The mesh repairing

is based on a target edge size which is a discrete scalar field (just like the

flow quantities), i.e. defined for every mesh node. Such a target edge size is

computed by solving a Helmholtz equation to ensures that the node distribution385

is smooth. Moreover, a mesh smoothing scheme is proposed to avoid excessive

remeshing. Finally, a mass conservation algorithm is presented to keep two-

phase flow mass conserved when strong mesh update occurs. The details of this

proposed remeshing algorithm is described in the following sections.

4.1. Mesh nodes distribution390

The triangle edge length determines whether insertion or deletion is required

for a given predefined distance in a specific zone, therewith it is possible to avoid

clustering and dispersion of computational nodes. In this work, the distribu-

tion edge lengths h are obtained by the solution of the following Helmholtz’s

equation:395
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∇2h =
1

kh
(h− hb) (40)

where kh is a diffusive parameter and hb is the initial edge length distribution.

Thus, the obtained solution h corresponds to a smooth distribution of nodes in

the space. Note that for large values of kh in the above equation, the right hand

term tends to zero, thus resulting in Laplace’s equation (∇2h = 0) in which the

solution damps all the sudden changes in the distance between nodes. On the400

other hand, assuming a small value of k, the solution h approaches the initial

node distribution hb. The initial node distribution hb may be set according to

the flow requirements, where a particular zone may or may be not refined.

In this work, the boundary conditions to solve the Helmholtz equation are

set to a chosen non-dimensional characteristic length and imposed as a Dirichlet405

type. Typical values of such a characteristic length is at order of 10−2. The

initial node distribution is defined according to a distance function inversely

proportional to the interface between phases. Therefore, closer to the bubble’s

interface the clustering of nodes is higher. Another initial node distribution

may be defined to set higher node density close to the domain boundaries,410

where velocity gradient is usually high. In this case, the boundary conditions

is set to very small characteristic length (e.g. 10−4) and bubble’s interface to a

higher value such as 10−2, thus using the distance function, one can create an

initial distribution hb as mentioned before to be used in the Helmholtz equation,

where solution delivers high density of nodes close to the walls.415

The solution of the Helmholtz equation (40) has been shown to be ex-

tremely important in order to achieve a smooth distribution of nodes in the

2-dimensional domains. It is important to note that the solution of such equa-

tion has been extensively studied by many authors (see, for instance [36] and

[37]), where it was shown that pollution errors may affect the solution when420

the wave number kh increases, thus requiring extremely refined meshes. Due to

the positive sign of the right hand side term h, the eigenvalues of the presented

Helmholtz equations are complex and have only imaginary part, consequently
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avoiding pollution errors at the solution. Additionally, no refined meshes are

required and its solution can be used to compute a smooth distribution of nodes.425

The discretization of Eq. (40) follows the standard procedure found in finite

element formulation for 2-dimensional spaces with the Galerkin method, thus,

it does not need to be integrated in an axisymmetric fashion, however homo-

geneous Neumman boundary conditions should be used at the symmetry axis.

Successive solution of the Helmholtz equation should be avoided if computer430

resources are limited.

4.2. Mesh smoothing

The mesh velocity v̂ determines the motion of the nodes of the finite ele-

ment mesh. This velocity is obtained by a linear combination of the flow velocity

itself and smoothing velocities, in which the latter is defined according to a cri-435

terion to redistribute the mesh nodes, thus minimizing the number of remeshing

steps and avoiding heavy computation requirements. The transfinite mapping

method (see [38]) and Laplacian smoothing are examples of mesh-update pro-

cedures ([39]). To achieve accurate results and avoid excessive remeshing, the

mesh velocity should be set according specifically to the test case of interest,440

i.e. each two-phase flow must be treated specifically by adjusting the motion of

the mesh nodes accordingly. The mesh velocity can be any geometrical scheme

or even part of the fluid flow velocity v. Indeed, it can also be a set of differ-

ent schemes assembled in a manner aimed to redistribute the mesh nodes to

avoid clustering and collapsing of finite elements, consequently interrupting the445

numerical simulation.

In this work, the 1D boundary mesh (interface and domain boundaries) and

the 2D domain mesh are treated separately, thereby making the remeshing more

flexible and adjustable to different flow situations. The mesh velocity v̂ is com-

bined into a scheme that considers different mesh motions and is adjusted by450

parameters varying from 0 to 1 allowing flexibility and adaptability to different

two-phase flows. These mesh motions covers the well known Laplacian smooth-

ing operator that is applied to the triangular mesh, interface mesh and the
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axisymmetric boundary. Moreover, we have added a smoothing process based

on the interface velocity that keeps interface node neighbors away enough from455

the interface nodes, thus avoiding element collapsing in demanding mesh defor-

mation test cases. Additionally, to decrease the displacement of nodes in the

tangential direction, one may remove partially, or even totally, its velocity from

the total interface’s velocity. We propose a set of mesh velocities that compose

the final mesh velocity v̂ that can be included in Eq. (6). The 1D boundary460

and 2D domain mesh velocities are therefore treated as follows:

v̂(x) =

β1v + β2vv + β3ve if x does not belong to the interface

v − γ1(v · t)t + γ2(ve · t)t if x belongs to the interface

(41)

where v is the flow velocity, ve is the Laplacian smooth velocity and vv is an in-

terface elastic mesh velocity. Such a velocity is the propagation of the interface

mesh velocity to its neighbours, making interface neighbours to follow the same

mesh motion of the interface, therefore avoiding squeezing of triangle elements465

around the interface between fluids. The strategy consists in finding all mesh

nodes where the distance to the interface is bounded to a predefined distance

parameter, including inner mesh nodes, and thus propagating the nearest in-

terface node velocity to the mesh node itself. If such a described method is

used at it is, all interface neighbours will move with same velocity of the closer470

interface node. However, one can use the same distance function to decrease

linearly, quadratically or exponentially the amount of interface velocity asso-

ciated to the neighbour mesh node, where closer mesh nodes will have more

velocity and remote nodes less interface velocity. This scheme has been success-

fully applied to overcome the fast element distortion close to the interface where475

the velocity gradient may be high. Moreover, to decrease the displacement of

nodes in the tangential direction at the interface, one may remove partially,

or even totally, its tangential velocity from the total interface velocity. This

can be achieved by removing the tangent component from the total interface
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mesh velocity v− (v · t)t. The parameter β controls the intensity of smoothing480

velocity in the inner and outer mesh and γ stands for the interface mesh reg-

ularization. With such a scheme, the parameters may be easily adjusted to fit

the requirements of many specific simulation cases.

Large mesh deformation in two-phase flow simulations, specifically in gravity-

driven simulations, suggests that the moving mesh technique requires arduous485

geometric maintenance, thereby demanding correspondingly high computational

resources. The proper choice of the parameters in terms of mesh transport (β’s

and γ’s) reduces considerably the frequency of the remeshing operations done

in the numerical meshes.

4.3. Mesh repair490

Unfortunately, mesh smoothing itself is not able to keep all the elements

bounded to optimal shapes after numerous iterations. Furthermore, the moving

front creates a poor distribution of interface nodes which can affect the accuracy

of the computed curvature and, consequently, the final solution. Since the con-

nectivity of the mesh is handled by the in-house code, a re-meshing technique495

is thus required to keep the elements aspect ratios in a satisfactory range as

indicated by ([40], [41], [42], [43], [44]). The technique proposed here consists of

changing the connectivity of the nodes and elements through “flipping” oper-

ations. Additionally, insertion and deletion of nodes is required when a coarse

surface mesh is detected or when a dense cluster of surface nodes is not desired,500

respectively. A detailed description of the geometric operation is found in [18]

and [45]. The criteria used when insertion and deletion of nodes is required is

discussed as follows.

4.4. Mass conservation

Massive geometrical operations may lead to axisymmetric volume variation505

due to the insertion and deletion of nodes lying at the interface between fluids.

To avoid accumulation of mass conservation errors a correction is done by mov-

ing the interface nodes in the direction of their associated normal vector, which
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are defined outward of the interface. Such a displacement is calculated based

on the initial phase axisymmetric volume, which is compared to the current510

iteration, and thus a successive relaxation method is applied to find the final

node positions. For a smooth interface geometry, the mass error after interface

remeshing in one time step was calculated, corresponding to 0.03%, and 12 it-

erations were required to recover the initial bubble volume for a tolerance on

the order of 10−8. For severe interface remeshing, the mass error may increase515

and more steps are then necessary to recover the initial bubble’s volume. Fig-

ure (4) shows the mass conservation error for the transient of two challenging

problems with the proposed new technique of moving boundaries that will be

presented at the results section. As can be seen at the figures, the bubble/drop

volume absolute error is bounded to 10−6 and 10−8 for the rising bubble in520

slowly divergent channel and the motion of drop in periodically constricted cap-

illary respectively. However it is possible to note that the error oscillates and

grows when high interface deformation takes place due to the geometrical op-

erations at the interface between fluids. It is also noted that more iterations at

the relaxation method is required to control the bubble/drop’s volume.525
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Figure 4: Mass conservation error evolution with time for two challenging problems with

moving boundaries presented at the results section: (a) Rising bubble in slowly divergent

channel and (b) motion of drop in periodically constricted capillary.
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4.5. Moving boundaries

The ALE framework is commonly found in fluid-structure analysis due to

its ability to displace mesh nodes according to the interactions between fluid

and structure. Such a technique may also be applied to simulate two-phase

flows with large domains with variable cross section. In this work we proposed530

a new method which combines the features of fluid-structure mesh dynamics

for simulating two-phase flows where the cross section of the channel varies

according to channel designs. Large periodic and non-periodic domains can be

easily treated with such a technique, reducing dramatically the computational

domain and consequently shorten the required simulation time. Since such a535

technique is not related to the discretization method, nor the space dimension, it

can be also used in the finite volume method as long as the equations are written

in the ALE framework in both 2-dimensional and 3-dimensional computations.

The proposed methodology consists in simulate the two-phase flow system

using the moving referential frame, where bubble remains nearly fixed in space540

where flow and boundaries travels backwards. In a standard situation, a slip

velocity condition is set to the walls according to the bubble’s center of mass

velocity, however this has been only applied to straight channels. In our work,

the relative motion is also set to the wall boundaries where boundary nodes are

displaced in a Lagrangian way for the radial direction relative to the bubble’s545

referential point, keeping the axial direction with an Eulerian slip condition.

The bubble’s referential point can be any, for instance the bubble’s center of

mass or the bubble nose.

The proposed strategy is easily embed to the present code at the mesh

smoothing method already presented. First, we find the new radial position of550

all wall boundary nodes relative to the bubble’s referential point rn+1
wall. Thus,

we find a Lagrangian radial velocity simply dividing the difference between the

initial wall boundary nodes position rnwall and the new position by the current

time step as follows:
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v =
rn+1
wall − rnwall

∆t
(42)

the radial velocity component v is used to move the points in a Lagrangian555

way, where the axial velocity u follows the standard Eulerian slip condition in

the moving referential frame according to the bubble’s referential point velocity.

The new mesh update set of equations for the mesh motion is written as follows:

v̂(x) =


β1v + β2vv + β3ve if x does not belong to the interface

v − γ1(v · t)t + γ2(ve · t)t if x belongs to the interface

v if x belongs to the moving boundary

(43)

here, the radial component of the velocity v is used to move nodes that belongs

to the moving boundary. This scheme is successfully applied to the test cases560

delivering interesting results as can be seen in the results section.

The overall cost of the remeshing procedure (mesh smoothing, mesh repair

operations, mesh nodes distribution and volume update) in the presented sim-

ulations represents 6% of the total simulation time. 2% is dedicated to the

interpolation of the new nodes to the previous mesh. Such a small amount is565

due to the proposed moving frame/moving boundary technique where extensive

remeshing is not required and the bubble does not move excessively causing

node collapsing and squeezing of mesh elements.

5. Results

Several single- and two-phase flows benchmark tests were carried out to570

successfully validate the code, including the Poiseuille flow, Drop under uni-

form translation and two-phase flows in microchannel geometry as can be seen

in [18]. In this section, numerical results obtained with the present Arbitrary

Lagrangian-Eulerian Finite Element code in axisymmetric coordinate for incom-

pressible two-phase flows is presented.575
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5.1. Sessile Drop

The next simulation was performed to validate the surface tension imple-

mentation and its coupling with pressure and gravity. A spherical drop with

radius R = D/2, where D is the non-dimension diameter was initialized two

diameters above the bottom of the domain and then released. Due to gravity,580

the drop, being heavier than the surrounding fluid, falls and hits the solid line.

Before the contact between the solid line and the interface, the drop deforms to

a quasi-steady state and approaches the wall with no significant shape changes.

The drop’s shape can be approximated by the classical Young-Laplace equation

of capillarity which, in non-dimensional form, states that:585

σ

(
1

R1
+

1

R2

)
= ∆pg = ∆ρg(x− x0) (44)

where R1 and R2 are the two principal radii at the apex of the drop, σ is the

surface tension coefficient and ∆pg stands for the hydrostatic pressure difference

across the interface, where ∆ρ = ρin − ρout. Considering ϕ as the drop tangent

angle with respect to the wall, for an axisymmetric drop:

κ =

(
1

R1
+

1

R2

)
=
dϕ

ds
+

sin(ϕ)

r
(45)

where s is the coordinate along the interface and r is the radial coordinate.590

The equations for the equilibrium position of an axisymmetric liquid drop in

non-dimensional form is written as follows:

dϕ

ds
= Êo(p− x) − sin(ϕ)

r
(46)

dr

ds
= cos(ϕ) (47)

dx

ds
= sin(ϕ) (48)

Here, p̂ stands for the dimensional reference pressure, p = p̂/ρgL as the non-

dimensional pressure and Êo = Eo(∆ρ/ρin) as the modified Eötvös number.
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These equations are integrated numerically using the 4th. order Runge-Kutta595

method with appropriate initial conditions: ϕ = 0, p = 3.095, r = 0.205 and

x = 0.037 and are then integrated up to ϕ = 4.196rad.

The simulation of the drop was performed assuming the following non-

dimensional parameters: R = D/2, Eo = 2, N = 100, ρin = 1.0 and µin = 1.0

for the drop and ρout = 0.1 and µout = 0.9 for the external fluid. The non-600

dimensional domain limits were set to be 3.5D×2.5D, where the first dimension

stands for the direction of gravity, and discretized by approximately 2000 trian-

gles and 1100 triangle vertices.

Lagrangian mesh motion is not desired due to extensive remeshing require-

ment, thus β1 = 0.0. The drop is translating downward, thus the mesh nodes605

will be squeezed by the interface motion. Setting β2 = 1.0 helps adjacent inter-

face nodes travelling with partial interface velocity. β3 = 1.0 is a good choice to

keep mesh distribuition smooth using the Laplacian operator. For the interface

mesh, γ1 = 1.0 and γ2 = 0.1 remove the tangent interface velocity and partially

smooth the interface node distribution respectively, since interface remeshing is610

already delivering a quality mesh distribuion.

Figure (5) shows the evolution with time of the drop shape in five different

time steps and the associated numerical mesh, including the explicit interface.

From t = 3.10 and on, the drop’s shape remains constant and the motion is

purely translational, thus it can be compared with the numerical solution of615

Young-Laplace’s equation.

The numerical solution of the drop’s shape is compared to the solution of

the Young-Laplace’s equation (Eq. (46),(47) and (48)) and is shown in Fig. (6).

The results show that the sessile drop is correctly predicted by the present

implementation, due to the accurate balance of the gravity, pressure and surface620

tension force. The remeshing algorithm used 5% of the simulation time, while

the solution of the linear systems used approximately 43%. Assembling of the

finite element operators used 28%, while setting of boundary condition used

10% of the total simulation time for this test case.
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(a) t = 0.00 (b) t = 1.59 (c) t = 2.23 (d) t = 2.97 (e) t = 3.54

Figure 5: Bubble shape evolution with time for a drop in gravity field with dimensionless

numbers N = 100, Eo = 2. (a) Initial bubble shape with t = 0.00. (b-d) Bubble shape change

during transient solution. (e) Bubble shape of the long-term film drainage state at t = 3.54.

Figure 6: Comparison between the numerical solution of an axisymmetric sessile drop and the

solution of its shape derived by the Young-Laplace equation of capillarity.
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5.2. Rising of air bubble625

The numerical results were compared to the widely cited experiments per-

formed by [46]. Tests were carried out to predict the terminal velocity of a rising

air bubble in aqueous sugar solutions for three different viscosities. According

to the experiments, the volume of the generated bubbles was 9.3cm3, thus the

diameter is d = 2.61cm. The surface tension of 0.078N/m was that of the air-630

water-sugar interface, the bubble air’s viscosity and density are 1.78×10−5kg/ms

and 1.225kg/m
3

respectively. We considered an average value for the aqueous

solution density to be 1350kg/m
3
, since the experiments presented measure-

ment variations, and five different liquid viscosities {2.73, 1.28, 0.54}kg/ms, thus

changing the final shape of the rising bubbles. The refinement levels used had635

approximately 2000 nodes, 3100 triangles, 350 interface nodes and 351 interface

lines. The geometry of the domain consisted in a rectangle with dimensions of

12D × 5D with the higher dimension along the gravity direction was used and

a bubble with radius R = 0.5 was placed at the top of the domain where the

center of mass is located at r = 8D. A moving frame strategy was adopted here,640

where the bubble’s front node at the axis of symmetry remains fixed in space

and flow is moving backward. Such a strategy is interesting for simulating large

domains, otherwise the bubble would touch the top lid of the numerical domain.

Figure (7) shows bubble shape transition and the center of mass velocity of

the rising air bubble immersed in sugar water solution. The bottom edge of the645

bubble, where the curvature changes its sign varies accordingly to the viscosity.

The mesh parameters used in these simulations is in accordance to the previous

test case (Sessile Drop) were a fixed frame is used to simulate the translation

of the bubble’s centroid, therefore β1 = 0.0, β2 = 0.8, β3 = 1.0 were set to the

inner/outer mesh and γ1 = 1.0 and γ2 = 0.1 to the interface mesh. Note that650

we set β2 = 0.8 differently of the previous test case, and we have not seen any

quantitative difference compared to β2 = 1.0.

The Eötvös number was constant for all simulations and were set to Eo =

116. For each case, the Archimedes number changes due to the viscosity of the

liquid, as the ratio of density and viscosity as follows: (Case 1) N = 194.88,655
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ρin/ρout = 9 × 10−4, µin/µout = 6.53 × 10−6. (Case 2) N = 194.88, ρin/ρout =

9 × 10−4, µin/µout = 1.39 × 10−5. (Case 3) N = 1091.57, ρin/ρout = 9 × 10−4,

µin/µout = 3.29 × 10−5.

(a) (b) (c) (d)

Figure 7: Time evolution of rising of an air bubble immersed in aqueous sugar solution. (a)

Bubble rising velocity for three test cases and comparison with experiments performed by [46].

(b) µ = 2.73kg/ms, (c) µ = 1.27kg/ms and (d) µ = 0.539kg/ms

In Fig. (8) the final bubble shape for the three presented test cases are shown

with the associated finite element mesh, including the explicit representation of660

the interface with nodes and triangle edges. As can be seen in Figs. (8b,8c),

strong mesh distortion is well modeled by a coarse mesh, delivering accurate

results as compared to [46].

5.3. Rising of Taylor air bubble

To characterize the rising velocity of air bubbles in different solutions, we665

have identified 2 regions in the flow pattern map for the present numerical

simulations. One solutions of sucrose and one of ethylene-glycol have been used.

Table 1 summarizes the fluid properties used in the rising Taylor (elongated)

bubble simulations.

The numerical solution for the rising bubble requires a long domain to be670

compatible to the experiments. According to [47], the development of the bub-
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(a) (b) (c)

Figure 8: Final bubble shape and the associated finite element mesh for the rising of a

single bubble in three different water-sugar solution where the dynamic viscosities are (a)

µ = 2.73kg/ms, (b) µ = 1.27kg/ms and (c) µ = 0.539kg/ms

ble’s shape and, consequently, the terminal velocity requires that the numerical

domain should be wide enough to avoid flow disturbances. Using the moving

frame strategy, the bubble’s front node remains fixed in space while the flow

moves backward. The moving boundary technique described in this work is675

not used in the current test case since the radius of the channel remains con-

stant during all the simulation. Since wall is affecting the hydrodynamic of

the problem, the boundary condition should be updated according the bubble’s

referential point velocity, therefore the upper domain wall had slip velocity con-

dition in x direction. The numerical domain used to simulate all the fluids given680

by Table (1) was set to D/2 × 10D, where D stands for the circular channel di-

ameter. Due to the moving frame strategy, the initial Taylor bubble was fixing

the bubble’s front node at x = 7.9D to guarantee that the bubble’s wake is

well captured, thus allowing the bottom of the bubble to deform. The initial

bubble’s film thickness was fixed to δ = 0.1 to all simulations. Care was taken685

to add an extra mesh node layer to solve the liquid film formed between the

wall and a confined bubble.
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Table 1: Fluid properties for the rising of air Taylor bubble

fluid properties dimensionless number

ρ µ Eo Mo

[kg/m
3
] [µPa · s] [-] [-]

sucrose 1172 5.650 50 10−4

ethylene glycol 1113 19.900 30 10−6

air 1.789 1.225 — —

Figure (9) shows time progression of a Taylor air bubble immersed in a

sucrose solution. The same bubble shape and film thickness, as the previous

cases, is used as an initial shape. In the transient evolution, the bubble’s velocity690

reached its maximum velocity at time t ≈ 1, and its terminal velocity at time

t ≈ 3.7 Also, it was shown that the bottom part of the bubble was pulled in and

oscillated until convergence at t ≈ 7.4. The mesh parameters used in this test

case are similar to the previous test case and were set to β1 = 0.0, β2 = 1.0,

β3 = 1.0, γ1 = 1.0 and γ2 = 0.1. The dimensionless numbers were set to695

Mo = 10−4, Eo = 50. Figure (10 presents the transient solution of the bubble’s

center of mass velocity. The initial number of mesh nodes (only vertices of the

triangle) and mesh elements were 9611 and 18370 respectively, where the final

were 9653 and 18445 for t = 8.02.

It was observed, an overshooting of the ascension velocity from time t = 2700

to t = 3, due to the initial deformation of the bottom part of the bubble, and

consequently acceleration of the center of mass. The result of the bubble’s ter-

minal velocity agreed to the prediction of the flow pattern map. The computed

numerical error was found to be of 1.3% for t > 6.

Figure (11) show the evolution in time of the bubble’s center of mass ve-705

locity, in which the computed terminal velocity approaches the value found in
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(a)

t =

0.00

(b)

t =

1.52

(c)

t =

3.07

(d)

t =

4.14

(e)

t =

8.02

Figure 9: Bubble shape evolution with time an air bubble in a sucrose solution with dimen-

sionless numbers Mo = 10−4, Eo = 50. (a) Initial bubble shape with t = 0.0. (b-d) Bubble

shape change during transient solution. (e) Terminal bubble shape with t = 8.02.

the flow pattern map. The error was found to be 5.5%. The mesh parameters

used in this simulation were β1 = 0.0, β2 = 0.5, γ1 = 0.5 and γ2 = 0.1 and the

pair of dimensionless numbers was set to Mo = 10−6,Eo = 30. Additionally, a

numerical mesh detailed view is shown in Fig. (11b) where one can observe the710

tail of the air bubble. Note here that the interface is represented by nodes and
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Figure 10: Rising of an air Taylor bubble immersed in a sucrose solution with dimensionless

numbers set to Mo = 10−5 and Eo = 40. The time evolution of the Bubble’s center of mass

velocity is compared to the terminal bubble’s velocity found in [48]. Velocity and time are

non-dimensional.

line segments both part of the numerical mesh. Moreover, it can be seen that

the relative high interface deformation can be handled with the current method-

ology. The initial number mesh nodes (vertices of triangle) and mesh elements

were 11495 and 21978 respectively. While at the end of the simulation these715

numbers were 11609 and 22196 for mesh nodes and mesh elements respectively

for t = 10.00. The obtained result shows that the bubble shape and terminal

velocity agrees well to experimental data.

It is important to note that the liquid film for the Taylor bubble simulations

adds significantly the difficult of handling the mesh in the liquid film. At our720

simulations, the film thickness of the rising of the Taylor bubbles presented

errors of 4 − 6% compared to the correlation of [49].

5.4. Rising of air bubble in slowly divergent channel

The rising of an confined air bubble in a slowing divergent channel is numer-

ically simulated in the current test case to demonstrate the moving boundary725
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(a)

(b)

Figure 11: Rising of an air Taylor bubble immersed in a ethylene-glycol solution with dimen-

sionless pair numbers set to Mo = 10−6,Eo = 30. (a) The time evolution of the Bubble’s

center of mass velocity is compared to the terminal bubble’s velocity found in [48]. Velocity

and time are non-dimensional. (b) Numerical mesh detailed for the tail of the air bubble at

time t = 2.48.

technique proposed in this work. The divergent section is described by the

following equation:
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rn+1
wall =

D

2
+

4.5

100

(
x+ xn+1

ref − ξ
)

if 10 ≤ x+ xn+1
ref ≤ 30 (49)

where D = 1 stands for the initial channel diameter, x is the axial coordinate,

xref is the bubble referential point and ξ is the axial location of the initial

divergent section. The new boundary node position rn+1
wall is computed every730

time step as function of the bubble’s referential point, thus the result is replaced

in Eq. (42) to compute the radial velocity component v which will be used to

move points using Eq. (43). Bubble’s center of mass remains fixed in space

and its referential point xref increments each time step n with axial bubble’s

center of mass velocity uref according to xn+1
ref = xnref + urefdt. The initial735

referential point is x0ref = 0. Flow and geometry move backward in the direction

of gravity. In this test case, the divergent sections starts in ξ = x = 10 for a

unit channel diameter D = 1 and ends at x = 30 when the channel diameters

reaches D = 2.8, followed by a straight constant section with D = 2.8 until

the end of the simulation with x = 35. The initial effective numerical domain740

length is L = 8D. Note that the first straight channel has length L = 10D and

thus the initial effective numerical section has constant section between both

ends. During all the simulation, the length L = 8D was kept constant, while

the diameter of the channel changed according to Eq. (49).

Figure 12 shows a schematic representation of the domain geometry and745

initial bubble’s location for this proposed test case. The simulation parameters

were µin = 10−5Pa.s for dynamic viscosity of the gas phase, µout = 10−3Pa.s for

dynamic viscosity of the liquid phase, while density of gas and liquid were ρin =

1.225kg/m
3

and ρout = 1000kg/m
3

respectively. The non-dimensional numbers

were set to Mo = 10−5 and Eo = 40, resulting in N = 80000 as the Archimedes750

number. The Lagrangian velocity is set to zero to avoid backward mesh nodes

displacement since the fluid flow is outflowing in the direction of gravity. Due

to the moving frame, where the bubble’s center of mass remains fixed in space,

the parameter β2 is set to zero since the two-phase interface does not push and

pull neighbor nodes next to it. The Laplacian smooth parameter β3 is kept to755
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unit to maintain inner and outer meshes with smooth node distribution. The

interface tangential velocity is not removed in the present test case (γ1), allowing

the free motion of the interface nodes along the interface path. The interface

Laplacian smooth parameter γ2 is set as the previous test cases. Therefore, the

mesh parameter were set to β1 = 0.0, β2 = 1.0, β3 = 1.0, γ2 = 0.0, γ2 = 0.1.760

The initial mesh node number was 7648 vertex nodes while the total initial

number of triangle elements was 44505. Since the numerical domain width

was increasing with time, the simulation ended up with 9739 nodes and 56957

triangle elements.

moving wall

liquid phase
gas bubble

gravity

5.0D20.0D2.1D

D
/2

3.9D 4.0D

numerical domain length 8D

Figure 12: Schematic representation of the whole numerical domain geometry and initial

bubble’s location for the rising bubble in slowing divergent channel using the moving boundary

technique for two-phase flows. The initial effective numerical domain was set to 0.5D × 8D

wide.

Figure (13) shows the bubble’s center of mass nondimensional velocity at765

initial time steps 0 ≤ t ≤ 14 at the initial straight section of the proposed

simulation. Such an initial dynamics can be also compared to [48] as the previous

section. For such, a numerical bubble’s rising velocity of approximately 0.30

was found after t = 4 which is in accordance to the experiments of White and

Beardmore. Moreover, the complete simulation of the rising of an air bubble can770

be seen from time 0 ≤ t ≤ 82.00. As can be noted, its velocity increases when

the divergent section begins and stabilizes again in a fixed value when reaches

the second and last straight section. It is noted that from time 16 ≤ t ≤ 20 the

bubble’s accelerates fast due to the initial divergent section where a stronger

pressure gradient is identified. From time t = 20 to t = 58, the air bubble keeps775
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accelerating due to the continuous expansion of the channel, however with a

lower acceleration compared to the initial divergent section. From t = 60 and

on, air bubble reached the second straight section and its non-dimensional axial

velocity stabilizes at u = 0.54 for channel diameter D = 2.8.

The bubble’s shape evolution with time for five different time steps are shown780

in Fig. (14). It can be confirmed that the inclined moving wall is reaching

bubble’s nose in t ≈ 14. Note that in the moving boundary technique, the

bubble’s referential point is fixed in space, therefore while the air bubble travels,

the channel walls move backward, consequently the diverging section approaches

the bubble according to Eq. (49). In t > 14 the air bubble flows at the diverging785

section and it reaches the last straight channel when t > 58. It can also be

noted that the proposed methodology solves with accuracy the transitory bubble

shape, i.e. from Taylor bubble t < 15 to spherical cap t > 15. The mesh nodes

(triangle vertices) and mesh elements at initial time step were 7648 and 14605

respectively, while at the end of simulation, 13600 mesh nodes and 26425 mesh790

elements were found for t = 74.29. Such an increase in number of nodes and

elements can be automatically handled by the proposed method and it is due

to the change of channel diameter.

The solution of the proposed numerical simulation using the moving bound-

ary technique described in this work has shown to be extremely useful to simu-795

late large domains with variable cross-sections at very short numerical domain.

The complete simulation was carried out with a numerical domain of L = 8D

during all simulation and a total simulation distance of x = 32.66.

5.5. Motion of drops in periodically constricted capillary

The following simulation is a challenging test case where the motion of drops800

in a periodic corrugated channel is investigated and compared to experiments

found in [50]. Using the moving frame, where drop’s remains nearly fixed in

space, the moving boundary technique is used to reduce capillary length by

moving the walls according to the drop virtual position as in relative motion.

The channel wall is sinusoidal and its profile is described by the harmonic wave805
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Figure 13: Bubble’s center of mass nondimensional velocity for the rising of an air bubble

in a slowly divergent channel using the moving boundary technique. (a) initial time steps

0 ≤ t ≤ 14 at the initial straight section where [48] can also be used as comparison to and (b)

complete simulation 0 ≤ t ≤ 82.00.
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(a) t = 0.00 (b)

t = 17.77

(c) t = 45.79 (d)

t = 57.496

(e) t = 74.29

Figure 14: Bubble shape evolution with time an air bubble in a sucrose solution with dimen-

sionless numbers Mo = 10−5, Eo = 40. (a) Initial bubble shape with t = 0.0. (b-d) Bubble

shape change during transient solution. (e) t = 74.29.

equation:

rn+1
wall =

D

2
+Asin

[
2π

λ
(x+ xn+1

ref ) − ϕ

]
(50)

where D is the channel’s diameter, A is the wave amplitude, λ is the wavelength

and ϕ is its phase. The axial coordinate is x, while xref refers to the drop’s

referential point. Drop’s nose remains fixed in space and its referential point

xref increments each time step n with axial drop’s nose velocity uref according810

to xn+1
ref = xnref + urefdt. The initial referential point is x0ref = 0. The new

boundary node position rn+1
wall is computed every time step as function of the

drop’s referential point, thus the result is replaced in Eq. (42) to compute the
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Table 2: Fluid properties for the motion of drops in periodically constricted capillary

system properties

ρout ρin µout µin σ

[kg/m
3
] [kg/m

3
] [µPa · s][µPa · s] [mN/m]

GW3 1250 995 450 530 10.5

DEGG3 1110 995 28 530 3.2

DEGG12 1160 966 87 115 4.2

radial component velocity v which will be used to move points using Eq. (43).

We have chosen to simulate three different systems namely DEGG3, DEGG12815

and GW3 with geometric parameters set to A = 0.07, λ = 4 and ϕ = 0. The

fluids properties are found in Table (2) and the non-dimensional numbers are

easily computed using Eqs. (4) and (5).

A schematic representation of the domain geometry and the simulation pa-820

rameters is shown in Fig. (15) where the drop’s position, the numerical domain

length and the harmonic wave equation used to move the upper domain bound-

ary are shown. As can be seen, the drop’s center was placed 2.4D behind the

front of the channel to avoid inflow disturbances. The numerical length was set

to 8D to enable full drop’s wake description. The drop’s radius Rd was computed825

as a function of the κd parameter and the channel diameter as Rd = κdD/2.

Several κd parameters have been used as the reader will find along this section.

In these corrugated tests cases, the mesh parameters β and γ were chosen

according to the previous test case in Sec. (5.4). Since boundaries are in constant830

motion, the Laplacian smoothing parameter β3 is an important setting to keep

mesh with elastic capabilities. Therefore, the mesh parameter were set to β1 =
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moving wall

liquid phase drop

gravity

2.4D

D
/2

numerical domain length: 8D

Figure 15: Schematic representation of the domain geometry and initial drop’s location for

the motion of drop in corrugated channel using the moving boundary technique for two-phase

flows.

0.0, β2 = 1.0, β3 = 1.0, γ1 = 0.0, γ2 = 0.1.

Figure (16) shows the numerical results compared to the experimental data

from [50] for two different fluids: DEGG12 and GW3 with properties found in835

Table (2). The x-axis is the non-dimensional corrugated length and the y-axis

is the ratio of the computed instantaneous perimeter P and its initial perimeter

Pinit when simulation starts. The numerical results show good agreement to the

experiments where the curves follow the same trend with experiments. It has

been noted at our numerical simulations that the evolution of the ratio P/Pinit840

from non-dimensional corrugated length 0.0 to approximately 0.6 of κd = 97

(GW3) and κd = 0.95 (DEGG12) does not obey a linear trend as found in the

experiments results. This could be partly explained by the uncertainties in the

experimental data.

In Fig. (17) we present numerical results for the motion of drop in DEGG3845

system in corrugated channel for one corrugation length versus the ratio of ax-

isymmetric drop perimeter for three different κd parameters: κd = {0.70, 0.80, 0.90}.

These numerical simulations used the same geometry and mesh strategies adopted

in the previous cases.

The drop’s shape evolution with time for five different time steps for the GW3850

system at one corrugated period are shown in Fig. (18). As can be seen, the

sinusoidal moving walls are different from one to another figure while the drop’s

nose remains fixed in space. While the drop travels, the moving boundaries

moves downward according to the harmonic wave equation Eq. (50). One of the
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Figure 16: Comparison of the numerical results of the drop motion in corrugated channel with

experiments found in [50] for one corrugated length for fluids: (a) GW3 and (b) DEGG12.

great advantages of the proposed moving boundary methodology in the context855

of the ALE-FE method is the reduced requirement for extensive remeshing.
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Figure 17: Numerical results for the motion of drop in corrugated channel for one corrugation

length versus the ratio of axisymmetric drop perimeter for the system DEGG3.

For this simulation, the number of mesh nodes remained nearly constant. The

initial number of mesh nodes and mesh elements were 2400 and 4220 respectively

for this system, while at time t = 1241.15, where the drop has its maximum

extension, the number of mesh nodes and mesh were 2628 and 4684 respectively.860

6. Conclusions

In this article, an Arbitrary Lagrangian-Eulerian Finite Element method

was presented for the simulation of axisymmetric two-phase flows with dy-

namic boundaries applied to several gravity-driven problems. This method865

discretizes the incompressible Navier-Stokes equations with the finite element

method on unstructured triangular meshes in complex geometries. An adaptive

mesh refinement method was used to accurately resolve the interface motion
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(a) t =

0.00

(b)

t =

775.34

(c) t =

1241.15

(d)

t =

1294.01

(e) t =

1315.14

Figure 18: Time evolution of the two-phase flow system GW3 (glycerol-water, 96.2 wt%) as

found in [50] showing the initial condition (a) t = 0.00 and one full corrugation length passage

for non-dimensional time (b) t = 775.34, (c) t = 1241.15, (d) t = 1294.01 and (e) t = 1315.14.

and remeshing was performed to preserve the quality of the mesh elements. Us-

ing a discrete version of the Frenet-Serret formula for the curvature calculation870
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was proved to be a good choice, as high accuracy could be achieved at very low

computational cost. Validation of the method was presented for two-phase flow

problems including the sessile test case and rising of single bubbles and drops

where the numerical results were compared to exact solutions and experimental

data of several authors. Moreover, highly demanding computational examples875

such as the flow in slowly divergent channel and in a periodically constricted

capillary was proven to be easily addressed with the proposed moving boundary

technique. Its extension to 3-dimensional flows is straightforward and follows

the same procedure as detailed in this work. Additionally, any other method

using the ALE equations such as the finite volume method can be rewritten880

to embed such a moving boundary capability since the proposed technique is

based on the ALE formulation and it is not dependent on the discretization

method. Based on the presented results, the current approach was shown to be

an accurate simulation tool for capillary two-phase flows in periodic and large

domains.885
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