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ABSTRACT
A numerical method is described to study two-phase flows

for single and multiple bubbles with phase change. The fluid flow
equations are based on the Arbitrary Lagrangian-Eulerian for-
mulation (ALE) and the Finite Element Method (FEM), creating
a new two-phase method with an improved model for the liquid-
gas interface in microchannels. A successful adaptive mesh up-
date procedure is also described for effective management of the
mesh at the two-phase interface to remove, add and repair sur-
face elements, since the computational mesh nodes move accord-
ing to the flow. The Lagrangian description explicitly defines
the two-phase interface position by a set of interconnected nodes
which ensures a sharp representation of the boundary, including
the role of the surface tension. The methodology proposed for
computing the curvature leads to accurate results with moderate
programming effort and computational cost and it can also be
applied to different configurations with an explicit description of
the interface. Such a methodology can be employed to study ac-
curately many problems such as oil extraction and refinement in

∗Address all correspondence to this author.

the petroleum area, design of refrigeration systems, modelling of
biological systems and efficient cooling of electronics for compu-
tational purposes, being the latter the aim of this research. The
obtained numerical results will be described, therefore proving
the capability of the proposed new methodology.

NOMENCLATURE
D Bubble’s diameter
u Velocity vector
x Node coordinate
t Time
û Mesh velocity vector
uT Transpose velocity vector
∇ Differential operator
p Pressure
ρ Density
ρv Vapor phase density
ρl Liquid phase density
µ Viscosity
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µv Vapor viscosity
µl Liquid viscosity
cp Heat capacity
h f g Latent Heat of vaporization
H Heaviside function
Re Reynolds number
Fr Froude number
We Weber number
Pr Prandtl number
T Temperature
k Thermal conductivity
q̇ Heat flux
uI Velocity vector at the interface nodes
uIn Normal velocity vector at the interface node
uIt Tangential velocity vector at the interface node
ue Velocity vector based on Laplacian smooth operator
uvel Velocity vector based on velocity smoothing scheme
ul Velocity vector in liquid phase
uv Velocity vector in vapor phase
U∞ Free-stream velocity
n Normal direction vector
t Tangential direction vector
γ1 Parameter for the tangent velocity at the interface node
γ2 Parameter for Laplacian Smoothing at the interface node
β1 Parameter for Lagrangian motion at volumetric mesh node
β2 Parameter for Laplacian Smoothing at volumetric mesh

node
β3 Parameter for Velocity scheme at volumetric mesh node
Lb Bubble’s length
B Mass and diffusion matrix
BT Mass and diffusion temperature matrix
Mρ Mass matrix
MT Mass temperature matrix
K Diffusion matrix
KT Diffusion temperature matrix
D Divergent matrix
G Gradient matrix
GT Gradient temperature matrix
rn Right hand side vector
rn

T Right hand side temperature vector
un

d Right hand side vector in departure
ũ Computed velocity
bc1 Boundary condition vector for velocities
bc2 Boundary condition vector for pressure
bcT Boundary condition vector for temperature
g Gravity vector
f Surface tension force vector
ũcorr Corrected computed velocity
M−1

ρ Lumped mass matrix
B−1

L Lumped B matrix
n Current time step

n+1 Next time step

INTRODUCTION
A thermal collapse concerning the cooling of computer mi-

croprocessors may be expected if an efficient and better way to
cool and decrease the computer chip temperature is not achieved.
Today, most of the cooling devices found in personal computers
and datacenters use either single-phase air or water-cooling sys-
tems. Furthermore, a substantial increase of the number of chips
per motherboard plans to go to multi-layer stacks of chips with
internal cooling channels, since higher computational resources
are continuously required. It is known that the heat exchange of
two-phase flow systems are much higher than those using single-
phase flow, mainly due to the nature of the thermal behavior of
each phase in presence of an interface layer separating both flu-
ids. Therefore, a new cooling technique is proposed to main-
tain simultaneously the temperature of two or more stacked mi-
croprocessors, within an optimal working range, by flowing and
evaporating two-phase environmentally friendly refrigerants in-
between. These operating fluids are responsible for removing the
excessive heat produced by the processors, however the cooling
channels are limited to the order of 100 microns size.

Despite the available cutting-edge experimental techniques,
a deeper insight into the microscale flow field is necessary. How-
ever, to access such a small length scale accurately, different
techniques are required. In this context, numerical analysis has
become an useful tool to simulate the mechanisms of two-phase
flows, due to the fast growth of computer resources and the re-
duction of cost compared to those of experimental facilities. In
fact, the modeling of such conditions is not an easy task due
to the complexity of the non-linear set of equations that govern
the flow field. Moreover, the characterization of surface tension
forces and the interfacial deformation between the vapor and liq-
uid phases adds another level of complexity, all of which require
significant efforts to resolve in two-phase flow simulations.

The attempt to solve numerically two-phase flows splits the
research in two main categories, namely one-fluid and two-fluids
formulations. The former uses one set of equations to describe
all the phases and it is assisted by a color function, which defines
their regions in the domain. The latter describes each phase as
a separate fluid with its own set of governing equations, thus re-
quiring an additional mathematical formulation for their. Within
the one-fluid formulation, the interface description may be di-
vided in two sub-areas, namely Eulerian and Lagrangian descrip-
tions. The basic difference between both methodologies is re-
flected on the modeling of the interface between the phases. In
the Eulerian description, the computational mesh is fixed on the
space and an additional hyperbolic equation is required to de-
scribe the motion of the interface. Despite its relative ease of
handling strong interface distortions, the discretization of such an
equation may introduce artificial diffusion, thus leading to leak
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of accuracy, for instance the Volume of Fluid [1] and the Level-
Set [2] methods. On the other hand, the Lagrangian formula-
tion describes the interface between fluids explicitly by computa-
tional elements. Such a description allows a sharp representation
of the front, but its drawback is the proper treatment of topologi-
cal changes in the interface, since coalescence and break-ups are
not inherent to its methodology. The Volume-tracking Harlow
and Welch, 1965 and the Front-tracking [3] methods are far the
most widely used. Due to the shortcomings of purely Eulerian
and purely Lagrangian formulations, the Arbitrary Lagrangian-
Eulerian description allows these two frameworks to be com-
bined in one single formulation so that the best aspect of each
separately approach can be used in conjunction, that is, the com-
putational mesh nodes may move with the continuum in normal
Lagrangian fashion or to be held fixed in Eulerian manner. The
ALE description has shown to be suitable to describe fluid flow
problems (see, for instance [4]) and this work extends its capa-
bility to two-phase flows with phase change.

Two-phase flow problems become even more interesting if
phase change occurs, where the mass transfer from one phase
to another adds significantly complexity to the dynamics of bub-
bles and droplets. However, the modeling of such phenomena is
not an easy task and should be treated with extreme care. Un-
fortunately, the related literature, in the numerical domain, is not
so widely developed for mass transfer in single and two-phase
flows, compared to that for no phase change taking place. De-
spite the problems related on the modeling of phase change, ef-
forts have been invested to develop tools capable to predict, to a
certain extent, boiling and condensation processes in two-phase
flows. The pool boiling process was extensively reviewed by [5],
in which 4 basic mechanisms were identified that contribute to
the total heat flux, namely evaporation at the liquid interface, en-
hanced natural convection, natural convection and transient con-
duction at a nucleation site. It was also found that these mech-
anisms are strongly linked to the temperature of the superheated
wall. In [6], they presented a new model to simulate two-phase
flows with phase change in two-dimensional domains. The new
formulation was included in the previous front-tracking adiabatic
code developed by [7] to extend its computation to boiling flows.
Since the interface is represented by geometrical objects, special
treatment of phase change was considered. They also studied
the influence of several parameters in the interface temperature.
To validate their model, they compared it to the exact solution
of a 1-dimensional test case, followed by the simulation of film
boiling with different fluid properties.

In this work, we present an extension of the previous de-
veloped 3-dimensional code [8, 9], to simulate two-phase flows
with heat and mass transfer, which allows the simulation of com-
plex problems involving liquid-vapor interface. The equations
are written in the Arbitrary Lagrangian-Eulerian description and
discretized by the Finite Element method. An additional equa-
tion is required to model the temperature field and, due to the

mass transfer occurring in the interface, the mass conservation
equation is slightly modified to take into account boiling and/or
condensation. In the following sections of this paper, the mathe-
matical formulation used to model two-phase flows with phase
change will be detailed. Moreover, the interface representa-
tion and the employed re-meshing technique will be shortly de-
scribed. Latter, several numerical simulations will be presented
and focused to validate the implemented phase change algorithm.
Finally, conclusions from this study will be discussed.

NUMERICAL SIMULATION
Field Equations

Let us consider vapor and liquid occupying a domain where
phase change occurs. In the ’one-fluid’ approach, one set of
governing equations, namely momentum, conservation of mass
and energy, are written for both phases with the assistance of a
step function, which takes into account the jump of properties
in the interface separating the phases. Assuming that the flu-
ids in each phase are incompressible and the change of volume,
led by the phase change, occurs only at the interface, the mo-
mentum equation is written in the Arbitrary Lagrangian-Eulerian
non-dimensional form as:

ρ

[
∂u
∂ t

+(u− û) ·∇u
]
=−∇p+

1
Re

∇ ·
[
µ
(
∇u+∇uT )]

+
1

Fr2 ρg+
1

We
κ∇H (1)

On the left hand side of Eq. (1), the term u− û represents
the relative velocity between the flow field u and the mesh û
at one time step. The gravity term is represented by g, while
the system pressure by p and time by t. These equations are
non-dimensionalized by defining the following non-dimensional
parameters:

ρ = ρ∞ρ
∗ x = Lx∗ g = g∞g∗ c =Uc∗

µ = µ∞µ
∗ v =Uv∗ t =

L
U

t∗ κ =
1
L

κ
∗

p = ρ∞U2 p∗
∂

∂ t
=

U
L

∂

∂ t∗
∇ =

1
L

∇
∗

σ = σ0σ
∗

cp = cp∞
c∗p k = k∞k∗ T = (Tw−Ts)T ∗+Ts

Re, We and Fr are the Reynolds, Weber and Froude numbers
respectively, defined if referential velocity is known, as follow:
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Re =
ρlU∞D

µl
We =

ρlU2
∞D

σ
Fr =

U∞√
gD

Pr =
cpµl

kl

If velocity is not known “a priori” and cannot be used as
referential value, the non-dimensional form is taken using the
known diameter D and gravity g as the reference, and the non-
dimensional number are written as follow:

Re =
ρl
√

gD3

µl
We =

ρlgD2

σ
Fr = 1 Pr =

cpµl

kl

The term (1/We)κ∇H represents the surface tension force,
where H is the Heaviside function, which defines the region of
each fluid in the domain, so that the inner fluid is 1, the outer
fluid is 0 and the surface is 0.5. κ is the surfaces curvature com-
puted based on a new 3-dimensional extension of the Frenets for-
mula [9]. The fluid properties density ρ and viscosity µ are kept
constant at each phase, but not necessarily assume equal values.
Thus, the Heaviside function is used to defined a generic property
φ distribution along the domain as follow:

φ = φ1H +φ2(1−H) (2)

Within the ALE context, the energy transport equation
should take into account the relative velocity u− û, thus rep-
resenting the heat convection. The energy equation is written in
the Arbitrary Lagrangian-Eulerian non-dimensional form as:

ρcp

[
∂T
∂ t

+
(
u− û

)
·∇T

]
=

1
RePr

[
∇ · k∇T + q̇|∇H|

]
(3)

In the above equation, T is the temperature distribution, cp is
the heat capacity and k is the heat conductivity, both distributed
on the domain in the same manner as the density and viscosity.
Pr is the Prandtl number and q̇ is the heat flux defined as:

q̇ =−k∇T (4)

In mass transfer problems, the interface should be moved ac-
cording to evaporation or condensation effects, thus the velocity
field is no longer divergence free in the vicinity of the interface.

Therefore, the continuity equation is slightly modified to take
into account such a phenomena, so that:

∇ ·u =
1

h f g

(
1− ρl

ρv

)
q̇|∇H| (5)

Since the gradient of the Heaviside function is only differ-
ent of zero near the interface, the fluid equation becomes incom-
pressible far from it. The normal velocity of the interface uI is
found to be:

uI =
1
2
(ul +uv)+

q̇
2

(
1+

ρl

ρv

)
(6)

The new position of the interface nodes xI may be found by
integrating:

dxI

dt
= uI ·n (7)

where n is the outward normal vector.

Interface and Re-meshing Procedure
Unlike the descriptions found in most front-tracking codes,

the interface mesh implemented in this work is a sub-set of the
tetrahedron volumetric mesh, i.e. each triangle shares a face of
two adjacent tetrahedral elements, thus the interface is sharply
defined. Moreover, due to the finite element formulation, the
fluid properties are kept constant inside the mesh element and
no smoothing functions is required to treat the jump conditions
at the interface. As can be seen in Fig. (1a), the interface be-
tween the phases is not part of the computational mesh and it
should be defined by a function, which is advected using an addi-
tional equation. Moreover, the transition of properties (Φ1, Φ2)
should be calculated using a smooth function to avoid numeri-
cal instabilities. On the other hand, in the Lagrangian approach
(Fig. (1b)), the properties Φ1, Φ2 are sharply defined in each re-
gion, thus not requiring any additional function.

In two-phase flows within the moving mesh context, a re-
meshing process is extremely necessary since the flow field, ei-
ther due to the motion of a single bubble or due to the imposed
velocity condition, tends to move the mesh nodes from one re-
gion to another, damaging the uniformity of node distributions.
In this work, the interface between the phases is part of the com-
putational mesh and a surface re-meshing is also required to keep
the element connectivity consistently while the simulation is run-
ning. Thus, two sets of data are stored during the simulations,
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(a) (b)

FIGURE 1: Interface representation in two-phase flows. (a) In
the Eulerian approach, the interface between the fluids is located
somewhere in between the computational elements. On the other
hand (b) the Lagrangian description represents the interface by
computational objects, such as nodes, segments and elements,
thus achieving a sharp interface.

namely volumetric nodes and surface mesh. The former consists
in the mesh nodes distributed on the 3-dimensional space and
the later stands for the interface and boundary triangular meshes.
Each set of data is treated separately and exported to an external
mesh generator library [10], which is responsible to generate the
tetrahedron connectivity array at each time step. The volumet-
ric node distribution is done by solving Helmholtz equation, in
which the boundary conditions consist in the characteristic edge
lengths of each surface mesh, thus a smooth transition between
the interface and the boundary meshes is successfully achieved.
Note that the treatment of the volumetric nodes does not require
the maintenance of the tetrahedrons connectivity. On the other
hand, the surface meshes should be modified, at each time step,
to keep the triangles shape bounded to good aspect ratios. This is
achieved by the common mesh operations such as insertion and
deletion of points, flipping and contraction of and edges. More-
over, due to the implementation within the code where the volu-
metric and surface meshes are treated separately, the mesh distri-
bution treatments may be combined into a scheme and adjusted
by parameters varying from 0 to 1. Therefore, the volumetric and
surface velocities are therefore treated as follows:

û(x) =

{
β1u+β2uvel +β3ue if x /∈ xI

u− γ1(u · t)t + γ2(ue · t)t if x ∈ xI
(8)

Due to the description of the interface mesh by computa-
tional elements, the surface should move according to the fluid
motion. In the above equation, if x belongs to the interface, we
can define its velocity as uI . Thus, it is convenient to decom-

pose it into two orthogonal components: uIn and uIt which rep-
resent the normal and tangential velocities, respectively. To de-
crease the displacement of nodes in the tangential direction, one
may remove partially, or even totally, its velocity from the total
interface’s velocity. This can be achieved by either projecting
the interface’s velocity uIn to the normal vector associated to the
node or, in a simpler manner, by removing the tangent compo-
nent from the total surface mesh velocity uIt = u− (u · t)t. Such
a procedure may be included into a scheme so that the inten-
sity of the tangential velocity can be easy modified. Therewith,
the parameter γ1 controls the magnitude of the tangent velocity
in the total interface’s velocity. Letting γ1 = 1, only the normal
interface’s velocity is taken into account in the surface mesh mo-
tion, and therefore the surface nodes are not allowed to move
in the tangent direction. Additionally, the parameter γ2 includes
a Laplacian smoothing scheme [11] on the surface mesh nodes,
thus keeping them all bounded within good aspect ratio. The pa-
rameter β1 controls the Lagrangian motion of the inner and outer
volumetric mesh velocity. By setting β1 = 1, the flow velocity
u is fully included in the moving mesh velocity û and, conse-
quently, the volumetric nodes move according to the flow field.
Otherwise, letting β1 = 0, the flow velocity u is not taken into
account on the moving mesh velocity. The parameters β2 and β3
control the intensity of the velocity smoothing scheme uvel and
the Laplacian smooth scheme ue into the moving mesh veloc-
ity. Thus, setting both parameters to null, the volumetric mesh
smoothing is not performed. Note that the parameters γ and β

may vary from 0 to 1 to achieve the desirable node distributions
according to the simulation requirements.

Finite Element Method
The Navier-Stokes and energy equations are discretized

through the Finite Element method. A summary of the under-
lying principles is given below and further details can by found
at [4].

The Galerkin method is applied to the variational form of
the governing equations to discretize all terms except the non-
linear convective term. To overcome the obstacle of modelling
and implementing a numerical scheme for this term, the semi-
Lagrangian technique is employed (for details, see [12] and [13])
based on the idea of representing the acceleration field by a
Lagrangian point of view instead of the well-known Eulerian
derivative. For each time step the points are moved towards the
flow and, once the task is accomplished the coordinate system is
reinitialized and the original mesh is recovered. The substantial
derivative is evaluated in the strong form along the characteris-
tic trajectory, by estimating the position of a point and solving
the equation Dx/Dt backwards in time with the initial condi-
tion x(tn+1) = xi than an integration method is used to evaluate
the previous point position in the grid. A first order discretiza-
tion scheme is adopted assuming the trajectory as a straight line.
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The choice of element types for coupled PDEs problems must
take into account the Babuska-Brezzi condition in order to pre-
serve the stability properties intrinsic to the discretization scheme
( [14] and [15]). Such a condition is not mandatory, but must
be fulfilled if used in conjunction with the Galerkin method.
For these reasons and considering the excellent mass conser-
vation property, the Taylor-Hood element (Mini-element) was
used to represent pressure and temperature, both calculated at
the tetrahedron vertices, and the velocities, by evaluating them
at the tetrahedron vertices and its centroid. Thus avoiding crit-
ical numerical instabilities and pressure oscillations. Once the
discretization of the domain is accomplished, the system ma-
trices are assembled and the solution of the time dependent 3-
dimensional equations is then found by successively solving the
linear system in each time step for pressure, velocity and tem-
perature. Due to the strong coupling between pressure and ve-
locity, the numerical procedure implemented to solve the men-
tioned linear system uses the Projection method based on the
LU decomposition, which was first introduced by [16]. The aim
of this method is to uncouple pressure and velocity and solve
each quantity separately, thus reducing the large linear system
size into smaller ones. Additionally, the temperature equation
is solved separately and it does not require the same methodol-
ogy. The solution of the linear system for pressure and velocity
is described below followed by the solution of the temperature
field.

Let us define the matrix B and the right hand side vector rn
according to the Finite Element method as:

B =
Mρ

∆t
+

K
Re

rn =
Mρ

∆t
un

d (9)

where and Mρ and K are the mass and stiffness matrices respec-
tively. The time step is represented by ∆t, Re is the Reynolds
number and un

d is the velocity calculated in the previous time step
at the departure points from the semi-Lagrangian method. The
system is uncoupled and solved in the following way by comput-
ing the trial velocity ũ and solving the linear system with proper
velocity boundary conditions a bc1 as:

Bũ = rn +bc1 (10)

An update of ũ is performed while considering the gravity g
and the surface tension force f :

ũcorr = ũ+∆tM−1
ρL

(
Mρ g+

1
We

M f
)

(11)

Note that the subscript L refers to the Lumped matrix tech-
nique, in which a digitalization is performed to the consistent
matrix Mρ to reduce numerical costs in its inversion. The mass
transfer contribution across the interface Z is represented by the
expression below:

Z =

(
1− ρl

ρv

)
q̇|GT H| (12)

where ρl and ρv are the densities for the liquid and vapour phases
respectively. q̇ is the discrete heat flux and GT H is the gradient of
the Heaviside function defined by the temperature mesh nodes.
The pressure pn+1 is calculated by solving the linear system with
pressure boundary conditions bc2:

DB−1
L Gpn+1 =−Dũcorr +Z +bc2 (13)

where G is the gradient matrix,D is the divergence matrix and
B−1

L is the inverted lumped matrix B. The velocity solution un+1

is found from:

un+1 = ucorr +B−1
L Gpn+1 (14)

On the other hand, the solution of the linear system of the
temperature equation is straightforward. Let define the matrix
BT and rn

T as:

BT =
MT

∆t
+

KT

PrRe
rn

T =
MT

∆t
T n

d + q̇|GT H| (15)

where MT and KT are the mass and stiffness matrices of the tem-
perature equation respectively. Pr is the Prandtl number and Re
is the Reynolds number. The temperature calculated in the previ-
ous time step at the departure points is represented by un

d . Thus,
the solution of the temperature is found by solving the following
linear system for T with temperature boundary conditions bcT
as:

BT T = rn
T +bcT (16)

The solutions of the velocity and temperature linear systems
are obtained iteratively at each time step by the conjugate gradi-
ent method and preconditioned by the incomplete Cholesky fac-
torization. The pressure is solved by the generalized minimum
residual method and preconditioned by an incomplete LU factor-
ization. Such a methodology has shown to be suitable to solve the
linear systems of two-phase flow problems with phase change.
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0.1 Time step restriction
In the governing equations, the explicitly treated terms are

limited by a time step. The time step constraint for Semi-
Lagrangian term is given by the expression below:

∆tsl <
hmin

umax
(17)

where hmin is the smallest tetrahedral mesh edge length and umax
is the maximum value of velocity given by max{|u|, |v|, |w|}. On
the other hand, the motion of the mesh nodes is due to û and
the time step constraint should prevent the nodes from moving
more than one mesh cell, otherwise the mesh is corrupted due to
element distortions and collision of nodes. The strategy of the
moving mesh time constrain calculation is based on the veloc-
ity differences and the local mesh edge size, thus limiting one
node to overlap the other or cross the face of an element. Let
us consider v1 and v2 as the vertices of a tetrahedral edge he and
∆ûe = û1− û2 as the mesh velocity difference, thus the proposed
Lagrangian time step should be bounded by:

∆tl < min
(

he

|∆ûe|

)
(18)

Additionally, gravity and surface tension adds a constraint
to the final time step which is related to the wave velocity propa-
gating into the computational mesh. According to Brackbill and
Kothe [17] and Fortuna [18], such a criteria for both surface ten-
sion and gravity may be written as:

∆ts <
[

ρh3Eo
2π

]1/2

(19)

and

∆tg <
[

1
hmin

]1/2

(20)

In the above equations, ρ is an average fluid density between the
inner and outer fluids, h is the mesh characteristic length, hmin is
the smallest mesh length and Eo is the Eötvös. Thus, the final
simulation constraint may be written as:

∆t ≤min
{

∆tl ,∆ts,∆tg,∆tsl

}
(21)

RESULTS
Rising Bubble in Thermally Stratified Water Layer

The free rising of an air bubble immersed in a thermally
stratified water layer is investigated in this numerical simula-
tion. The physical properties of the fluid stands for those of
the binary air and water, i.e. density ρl = 1000kg/m3 and ρv =
1.225kg/m3, viscosity µl = 0.001Ns/m2 and µv = 1.7894e−
5Ns/m2 and surface tension σ = 0.072N/m, resulting in Re =
1455.66, Fr = 1 and We = 4.90. As can be seen in Fig. (2), the
numerical domain used in this simulation was a parallelepiped
domain with dimensions 13.3Dx10Dx27D and the initial tem-
perature distribution follows the rule:

Tini =


0.78 y≤ 7.83D
z∗3.428E−3+7.531E−1 7.83D < y < 25.33D
0.84 y≥ 25.33D

(22)
Note that despite heat transfer occurs, no mass transfer is

accounted in for this simulation of a free rising air bubble. For
this simulation, the volumetric mesh parameters β1 = 0.0 and
β2 = 0.0 were set to zero, while β3 = 0.7 to guarantee the volu-
metric nodes distant to the interface. The surface mesh parame-
ters were set to γ1 = 1.0 and γ2 = 0.5. The domain’s discretiza-
tion used approximately 40000 triangles and 6100 nodes. The
surface mesh (boundary and bubbles) had approximately 9500
triangles in which 5700 were part of the interface meshes.

D

10D

27
D

13.3D

T=0.78

T=0.84

T=0.84

T=0.78

L
in

ea
r

T
(z

)=
z*

3.
42

8E
-3

+
7.

53
1E

-1

7.
83

D
25

.3
3D

2D

FIGURE 2: Numerical domain dimensions and thermal profile
along y direction.
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In Fig. (3), the free rising of an air bubble immersed in ther-
mally stratified water layer was carried out, showing the evolu-
tion of bubble’s shape crossing different temperature layers along
the y axis. In Fig. (3a), the mesh used in this simulation is shown
as well as its initial conditions. It was found that the bubble
trajectory is not linear due to the generation of vortex while in
ascension. Moreover, the passage of the bubble in temperature
gradient zones increase significantly the mixture of the thermal
layers.

(a) t = 0.00 (b) t = 7.54

(c) t = 9.66 (d) t = 25.48

FIGURE 3: Free rising of an air bubble immersed in thermally
stratified water layer. (a) Initial condition t = 0.00 and finite el-
ement mesh. (b) Air bubble crossing temperature gradient zone
for T = 0.78 and t = 0.00. (c) Air bubble in temperature gradi-
ent zone T = 0.81 and t = 0.00. (d) Air bubble at T = 0.84 and
t = 0.00. Temperature and time are non-dimensional.

TABLE 1: FLUID PROPERTIES OF REFRIGERANT R236FA

Fluid: R236fa

vapor phase: ρ=18.294kg/m3 µ = 10.846 µPa · s

k=12.760mW/mK cp = 0.8844kJ/kgK

liquid phase: ρ=1360.3kg/m3 µ = 286.03 µPa · s

k=72.870mW/mK cp = 1.2641kJ/kgK

interface: σ=10.086mN/m

Isothermal Microchannel Two-Phase Flow
The isothermal simulation of an isolated bubble is per-

formed to evaluate the conditions found in microchannel flows
using refrigerant R236fa as the working fluid. A micro channel
with a square cross-section of 100x100 µm and 700 µm length
long, was represented in non-dimensional form as 1Dx1Dx7D.
The bubbles length was set to Lb = 1.2D where D is the cross-
section width. The simulation was performed using a moving
referential frame, where the bubble remains fixed in space. The
initial conditions were set to fully developed velocity profile pre-
viously simulated for single-phase flow and later interpolated in
the two-phase mesh. The boundary conditions were set as fully
developed velocity profile in the inlet (left wall) and outlet (right
wall) in which 1 node was set for prescribed pressure (Dirich-
let condition). All the remaining walls were set to zero velocity.
For the moving frame context, the bubble’s centroid velocity is
subtracted each time step of the current wall boundary condi-
tion, therefore the bubble nodes were fixed in space, and all the
remaining mesh nodes (including boundaries) moves backwards
relatively to the bubble’s centroid velocity. Figure (4) shows the
evolution of the bubble’s shape with time and colored by the ve-
locity component in the x-direction. After a transient stage, the
bubble reaches its stable solution for the bubble shape. However,
the tail of the bubble presents a small continuous oscillation, typ-
ically observed experimentally. The dimensionless liquid film
thickness remained stable and its minimum value was measured,
and it was found to be δmin = 0.057, which represents 57µm.

For this simulation, the volumetric mesh parameters β1 =
0.0 and β2 = 0.0 were set to zero, while β3 = 1.0 to guaran-
tee the volumetric nodes distant to the interface. The surface
mesh parameters were set to γ1 = 1.0 and γ2 = 1.0. The domain’s
discretization used approximately 69000 tetrahedrons and 8200
nodes. The surface mesh (boundary and bubbles) had approxi-
mately 16000 triangles in which 9000 were part of the interface
meshes.
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(a) t = 0.00

(b) t = 0.70

(c) t = 1.93

(d) t = 3.35

(e) t = 8.76

FIGURE 4: Bubble’s shape evolution with time for a single vapor
bubble. The working fluid is R236fa, whose details can be found
in the Table (1) The fluid is entering at the left of the domain and
exiting at the right. A transient stage occurs in (a-b), followed by
a nearly stable bubble shape in (c-e).

Isothermal Microchannel Two-Phase Flow of Two Bub-
bles

A more interesting test case was simulated using the refrig-
erant R1234ze as working fluid with two bubble placed 0.5D be-
hind the other one. Therefore, the second bubble is affected by
the wake formed by the motion of the first one, characterizing
a slug flow. Each bubble length was set to be Lb = 2D and the
domain dimension was set as the previous test case 1Dx1Dx7D.
The simulation was performed using a moving referential frame,
where the bubble remains fixed in space with same boundary
conditions for the previous test case.Figure (5) depicts the bub-
ble’s shape evolution of two vapor bubbles of the refrigerant
R1234fa. Different patterns were found in the bubble’s shapes

as well as the evolution of the film thickness with time, as can
be seen in Fig. (6). The liquid film thicknesses were found to be
δ = 20µm and δ = 37µm for the left and right bubble respec-
tively. From time t ≈ 8 till the end of the simulation, the two
bubbles remained equally distanced.

The volumetric mesh parameters β1 = 0.0 and β2 = 0.0 were
set to zero, while β3 = 1.0 to guarantee the volumetric nodes dis-
tant to the interface. The surface mesh parameters were set to
γ1 = 1.0 and γ2 = 1.0. The domain’s discretization used approxi-
mately 69000 tetrahedrons and 8200 nodes. The surface mesh
(boundary and bubbles) had approximately 16000 triangles in
which 9000 were part of the interface meshes.

(a) t = 0.00

(b) t = 0.70

(c) t = 1.93

(d) t = 3.35

(e) t = 8.76

FIGURE 5: Bubble’s shape evolution with time for two vapor
bubbles. The working fluid is refrigerant R1234ze, whose details
can be found in Table (2). The fluid is entering at the left of the
domain and exiting at the right. (a-c) Transient stage. (d) initial
formation of the surface waves in the tail of the vapor bubble. (d)
Stable bubble shape.
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TABLE 2: FLUID PROPERTIES OF REFRIGERANT R1234ZE

Fluid: R1234ze

vapor phase: ρ=25.898kg/m3 µ = 12.464 µPa · s

k=15.664W/mK cp = 1.0421kJ/kgK

liquid phase: ρ=1157.4kg/m3 µ = 202.71 µPa · s

k=62.060mW/mK cp = 1.3882kJ/kgK

interface: σ=8.5156mN/m h f g = 164.7kJ/kg
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FIGURE 6: Transient solution of the liquid film thickness com-
puted for the two vapor bubbles of the refrigerant R1234ze.

Two-phase Flow Boiling of Single Bubble
The dynamics of a single vapor bubble of the refrigerant

R1234ze was simulated taking into account the evaporation pro-
cess produced by the constant and uniform heat flux q̇ applied to
the bottom part (wall) of the numerical domain (see 2 for fluid
properties). Thus, the simulation of the microchannel placed on
the top of a working chip can be achieved. The bubble’s length
was set to Lb = 1.3D and the initial film thickness to δi = 0.35.
The domain dimension was set to 1Dx1Dx7D for a square cross-
sectional microchannel. The simulation was performed using
a moving referential frame, where the bubble remains fixed in
space. The initial and boundary conditions set to this problems
was the same of previous test cases and for the energy equation
was set for constant saturated temperature at bottom wall and
Neumann condition (n ·∇T ) for the remaining walls. Figure (7)
shows the transient solution of the temperature profile of two-
phase evaporation of R1234ze. Due to the evaporation process,

it was verified that the bubble’s volume changed 12% compared
to its initial volume. Moreover, the transient bubble’s shape pre-
sented a different pattern compared to the isothermal simulation
performed at [4] for the same working fluid, indicating that the
evaporation of the liquid film affected the bubble’s shape. The
surface waves were not identified in the tail of the bubble. The
measured film thickness found was δ = 0.073. A further investi-
gation is still required to validate the implemented mass transfer
model.

The volumetric mesh parameters β1 = 0.0 and β2 = 0.0,
while β3 = 1.0. The surface mesh parameters were set to γ1 = 1.0
and γ2 = 1.0. The domain’s discretization used approximately
69000 tetrahedrons and 8200 nodes. The surface mesh (boundary
and bubbles) had approximately 16000 triangles in which 9000
were part of the interface meshes.

(a) t = 0.00

(b) t = 3.03

(c) t = 4.52

(d) t = 8.41

(e) t = 13.03

FIGURE 7: Transient solution of two-phase flow boiling of re-
frigerant R1234ze. A constant heat flux q̇ is applied in the bot-
tom part of the domain. The fluid is entering at the left of the
domain and exiting at the right. Time and temperature are non-
dimensional.
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CONCLUSIONS
This article presents a new methodology for simulating in-

compressible two-phase flows with heat and mass transfer within
the Finite Element Method context in which the mesh moves in
an Arbitrary Lagrangian-Eulerian fashion. The coupling ALE-
FEM methodology provides a sharp representation of the inter-
face between the phases, not only for the geometrical representa-
tion itself but also for the definition of the phase properties, thus
resulting in a model, which accurately describes the actual phys-
ical conditions. The proposed treatment of the computational
mesh, splitting the surface meshes and the volumetric points, has
shown to be an excellent choice, thus avoiding the obstacles of
handling the remeshing process over the tetrahedron mesh, al-
lowing the utilization of a standard Delaunay tetrahedralization
library.

The heat and mass transfer was implemented into the code
using the same strategy of the fluid flow solver. However, it re-
quires an extensive reformulation of the isothermal method pre-
sented here. The thin thermal boundary layer requires an addi-
tional number of nodes and elements to be physically resolved,
thus increasing significantly the processing time. The prelimi-
nary tests presented for rising bubble in thermally stratified wa-
ter layer and boiling two-phase flow of single bubble in square
microchannels qualitatively agreed to those observed experimen-
tally. The two-phase flow boiling simulation requires finer mesh
to capture the heat and mass transfer accurately. The typical com-
putational time for each simulation presented in the results sec-
tions is approximately three days long for hundred thousand fi-
nite elements. A time step and mesh convergence analysis is still
required, as well as validations on the proposed model, to com-
pare the actual state of the phase change implementation with
different benchmarks available in the literature.
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