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Abstract. Proceeding with previous works made by Dos Anjos (2007) and Oliveira (2011) in their M.Sc. Dissertations,

developed in the Metalurgy and Materials Graduate Program of the Instituto Alberto Luiz Coimbra (COPPE – Brazil),

this work deals with the introduction of new features in a FEM – Finite Element Method code originally written by those

authors, for the study of the hydrodynamic stability in electrochemical cells with rotating disk electrode A review of the

related bibliography and the relevance of the subject can be found on the two cited M.Sc. Dissertations.

Currently, the FEM Code developed in our group features a first order in time semi-Lagrangean scheme for interpolation

of the shape functions for MINI elements. On a first step, QUADRATIC elements is now implemented, for discretization

of the spatial domain. The following step, not yet implementd, will cope with the implementation of a second order in time

semi-Lagrangea scheme. It is expected that both features will improve the precision of the results obtained with the code.
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1. INTRODUCTION
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Figure 1. A scheme of typical setup of electro-
chemical cells with rotating disk electrodes

The problem of current oscillations in electrochemical cells using
a rotating disk electrode has been addressed for more than 15 years by
the Metallurgy and Materials Engineering Department of the Federal
University of Rio de Janeiro. The electrochemical system herein con-
sidered basically comprises a cell with a rotating disk working elec-
trode driven by a variable velocity electric motor, a reference elec-
trode and a counter electrode consisting of a platinum screen close to
the cell sidewalls. The electrolyte consists of a 1MH2SO4 solution.
Fig. 1 schematically shows the system setup.

Stability analysis of the flow induced by the rotating disk elec-
trode reinforces the hypothesis that the current oscillations originate
from a hydrodynamic instability of the flow, boosted by the coupling
of the hydrodynamics with the concentration field generated by dis-
solution of the iron electrode in the electrolyte Pontes et al. (2004),
Mangiavacchi et al. (2007). A base state consisting of a generaliza-
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tion of von Kármán’s classical solution for rotating disk flow becomes unstable for Reynolds numbers beyond a certain
treshold, leading to a spectrum of possible patterns including concentric circles, radial straight lines, logarithmic spirals,
or a combination of these basic ones. The emerging patterns superpose to base state. Study of the transition to a more
structured state finds applications not only in electrochemistry, but also in high speed aerodynamics, in pattern formation
of turning agregates in cosmology and in the dynamics of turning fluid media in general.

Figure 2. A scheme of von Kármán’s flow
close to a rotating disk.

Fig. 2 schematically shows the solution by von Kármán and Angew
(1921) solution for rotating disk flow where the axial, radial and az-
imuthal components of the velocity can be observed, in cylindrical co-
ordinates. The magnitude of the velocity components depends on the
angular velocity imposed to the electrode and on the viscosity of the
fluid, in addition to the point considered. The radial flow is balanced by
the axial incoming radial flow, matching the continuity requirement.

The results from the linear stability analysis motivated our group to
pursue the analysis of the hydrodynamics of electrochemical cells by
solving the coupled hydrodynamic and chemical species transport equa-
tions using the Finite Element Method (FEM). First results for the steady
coupled fields were obtained by Dos Anjos (2007), who developed a
FEM code featuring three possible electrolyte configurations: constant
viscosity, electrolyte viscosity depending on the axial coordinate and
viscosity depending on the local concentration of ions originated from
the dissolution of the iron electrode. In this case, the variable viscos-
ity couples the hydrodynamic and the mass transport equations. Domain
discretization is carried out using the MINI element, as shown in Fig. 3, and the material derivative is represented by a
Semi-Lagrangian algorithm of first order.

2. GOVERNING EQUATIONS
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Figure 3. The mini-element
adopted in the FEM code.

In the above equations, c is the concentration of the chemical species result-
ing from the dissolution of the iron electrode in the electrolyte, D is the diffusion
coefficient of the species, Re and Sc are the Reynolds and Schmidt numbers, re-
spectively.

3. FINITE ELEMENT METHOD

In brief, we can mention that in the 1950’s of last century, the finite element
method was been widely used in the field of solid mechanics. With the consolida-
tion of the Galerkin method for diffusion equations, in the 1970’s, successful efforts
were made to extend the method for fluid dynamics problems. Soon after, specific
methodologies like Petrov-Galerkin methods, generalized Heinrich et al. (1977), Hughes et al. (1986), Johnson (1987),
adaptive methods by Oden et al. (1989), Taylor-Galerkin method by Donea (1984), Lohner et al. (1985), discontinuous
Galerkin method Oden et al. (1998), etc., were developed.
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The finite element method is a general discretization procedure supported by ongoing problems statements defined
mathematically. This reasoning strategy shows a consistent pattern with very useful computational methods for modern
engineering. In this section, a short description of the variational formulation (or form) of the Navier-Stokes equations is
presented, along with the semi-discrete Galerkin method (discretization of PDEs) and the semi-Lagrangian method.

3.1 Variational Formulation

The variational formulation is obtained by properly weighting the governing equations, namely, Eqs.(1)-(3). We
obtain:∫

Ω

Dv

Dt
·w dΩ− 1

ρ

∫
Ω

p [∇ ·w] dΩ +
1

Re

∫
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[
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: ∇wT dΩ = 0 (4)∫
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[∇ · v] q dΩ = 0 (5)∫
Ω

Dc

Dt
r dΩ +

1

ReSc

∫
Ω

(D∇c)∇rT dΩ = 0. (6)

Functions w, q and r are the weighting functions defined in the space V with the prescription:
V :=

{
w ∈ H1(Ω) | w = 0 in Γc

}
, where uc is the essential boundary condition value, Γc a possible boundary for

the domain Ω,H1(Ω) :=

{
u ∈ L2(Ω)

∣∣∣ ∂u
∂xi
∈ L2(Ω), i = 1, . . . , n

}
and L2(Ω) is the Lebesgue space, i. e., the space of

all square integrable functions.

3.2 The Semi-Discrete Galerkin Method

The semi-discrete Galerkin Method provides a partial discretization where the functions that approximate a solution
for the governing equations (Eqs.(4)-(6)) comprise a linear combination of shape functions depending on the time and
functions intended to depend on the space coordinates. Following this procedure we denote by NV , NP and NC the
number of velocity, pressure and concentration nodes, respectively, of the discrete grid of elements of the original domain
Ω. The following semi-discrete approximation functions are obtained:

vx(x, t) ≈
∑NV
i=1 ui(t)Ni(x) vy(x, t) ≈

∑NV
i=1 vi(t)Ni(x)

vz(x, t) ≈
∑NV
i=1 wi(t)Ni(x) p(x, t) ≈

∑NP
i=1 pi(t)Pi(x)

c(x, t) ≈
∑NC
i=1 ci(t)Ci(x)

where the coefficients ui, vi, wi, pi e ci denote continuous functions in the time (t) and functions Ni(x), Pi(x) and Ci(x)

are interpolation functions at specified positions x for the velocity, pressure and concentration, respectively.
The discretized system becomes, in matrix form:

Mȧ +
1

Re
Ka−Gp = 0

Da = 0

Mcċ +
1

ReSc
Kcc = 0,

where M, K, G, D, Mc, Kc, are matrices and a, c, ȧ, ċ vectors built from Assembly operator , given by Anel
e=1, where

nel is the number of elements.

3.3 The semi-Lagrangian method

The use of a discrete representation of the substantial derivative in the discretized weak form of the governing equations
can be observed. In this section we apply the semi-Lagrangian method to the substantial derivatives of the governing
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equations, we obtain we obtain that holds for every scalar or vetorial field:

Dv

Dt
=

vn+1
i − vnd

∆t
(7)

The global matrix system takes the following discrete form:

M

(
vn+1
i − vnd

∆t

)
+

1

Re
Kvn+1 −Gpn+1 = 0 (8)

Dvn+1 = 0 (9)

Mc

(
cn+1
i − cnd

∆t

)
+

1

ReSc
Kcc

n+1 = 0, (10)

where vnd = vn(xd, tn), cnd = cn(xd, tn) and xd refers to the starting point in the time tn ≤ t ≤ tn+1 with initial condition
x(tn+1) = xi.

4. FIRST RESULTS

The FEM Code written by Dos Anjos (2007) and Oliveira (2011) features a domain discretization employing the MINI
element. In this section we present first results obtained with the QUADRATIC element, including the axial profiles of
the relevant variables of the problem.

4.1 The Numerical Grid

A computational grid assuming a finite cylindrical domain with rigid side and bottom walls was adopted. The rotating
disk consists of a circular region on the top of the domain, turning with specified angular velocity. Beyond the radius of
the rotating disk we assumed a flat surface on the domain upper surface, subjected to a specified pressure set to zero.

Figure 4. The numerical grid used in the simulations

4.2 Changes Introduced in the FEM Code

Two modifications were introduced in the FEM Code:

1. A new command was added to the code Makefile to select the element type;

2. The number of velocity nodes in each element was changed from 5 (MINI element) to 10 (QUADRATIC element)
in the header file TElement.h, which defines the number of element nodes for each variable.
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4.3 Numerical Simulations

After introducing the above changes in the code, some simulations were made in order to compare the results obtained
with the use of the MINI element and with those obtained with the QUADRATIC element. Fig. 5 compares results
obtained the two types of elements after 10, 200 and 800 time steps, respectively. A grid with the inner horizontal
polygon with 6 sides, 8 polygons along the axial direction and 10 points along the axial direction was adopted.

Figure 5. First line: Simulation with the MINI element after 10, 200 and 800 time steps, respectively. Second line:
Simulation with the QUADRATIC element after 10, 200 and 800 time steps, respectively.

4.4 Comparing the Results Obtained with the Two Types of Elements

The simulations made with the two types of elements and presented in Fig. 6 show that the use of QUADRATIC
elements leads to smoother and thus, more precise profiles than those obtained with the MINi element.

Fig. 6 compares the nondimensional velocity profiles at the upper surface of the domain in the 10th time step of the
simulation. The abscissæaxis refers to the radial coordinate at domain upper surface and the ordinate axis contains the
velocity magnitude. F , G and H are defined as:

F =
vr
rΩ

G =
vθ
rΩ

H =
vz

(νΩ)
1/2

, (11)

where ν and Ω are the fluid viscosity and the disk angular velocity, respectively.

Figure 6. A comparison between the nondimensional velocity profiles at the rotating disk surface using the MINI element
(left) and the QUADRATIC (right), after 10 time steps.

Fig. 7 compares the pressure profiles at the disk surface with the two types of elements in the 10th time step of the
simulation. Graphic axis are as above.

Figure 8 compares the nodimensional velocity profiles obtained with the two types of elements. Profiles identified



Proceedings of the ENCIT 2012
Copyright c© 2012 by ABCM

14th Brazilian Congress of Thermal Sciences and Engineering
November 18-22, 2012, Rio de Janeiro, RJ, Brazil

Figure 7. A comparison between the pressure profile at the rotating disk surface using the MINI element (left) and the
QUADRATIC (right), after 10 time steps.

with a prime were obtained with the QUADRATIC element. The profiles are evaluated at the fourth point along the radial
direction in the 10th time step of the simulation.

Figure 8. A comparison between the nondimensional velocity profiles with F , G and H , obtained with the two types of
elements in the 10th time step of the simulation.

From Fig. 8 we can see that simulations made with the QUADRATIC element result in more precise profiles.
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