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Abstract. For many years the stability of rotating disk flow has been studied following the evolution of small perturbations

superposed to the classical von Kármán’s solution, von Kármán (1921, ZAMM, Vol. 19, pp. 233-252), Oliveira (Ms.C

dissertation 2011, COPPE/UFRJ). These equations were obtained assuming an infinite domain. In this condition side

wall effects are negligible Zandbergen (1987, Fluid Mechanics, Vol. 19, pp. 465-491), Barcia (2000, Journal of The

Electrochemical Society, Vol. 155, No. 5, pp. 424-427), Anjos (Ms.C dissertation 2007, COPPE/UFRJ). In the present

work we consider the effect of a finite domain on von Kármán’s solution, aiming to find the minimum dimensions of the

electrochemical cell, bellow which the assumption of von Kármán flow, with nondimensional velocity profiles dependes

on the axial coordinate only, no longer holds.
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1. INTRODUCTION

Figure 1. A schematic representation of a
rotating disk flow, wich shows the bound-
ary layers relatively to the three velocity
components: axial, radial and longitudinal.

In fluid dynamics, the study of swirling flows is very important due to the
large number of applications in different fields. Among them we can cite the
fabrication of computer memories by crystal-growth processes, lubrication,
aerodynamics, electrochemistry and cosmology Zandbergen P. (1987). This
study is usually performed by analysis in the hydrodynamic field of a given
domain solving the Navier-Stokes equations. In 1921 von Kámán found a
solution of the full hydrodynamic equations describing the flow generated
by a large rotating disk.

von Kármán’s flow is schematically shown in Fig. (1), with velocity com-
ponents represented in cylindrical coordinates close to the surface (vθ, vr
and vz). Due to the non-slip condition, the flow velocity at the disk sur-
face is equal to the disk velocity at each point of the surface. The rotational
movement of the fluid near the surface of the disk has the side effect of in-
ducing by means of centrifugal force, a radial component of the velocity, vr,
which drives the flow away from the axis. The flow must be replaced by
an incoming flow approaching disk surface. In addition, experimental se-
tups for rotating disk flows are more easily constructed than setups for more
complex geometries. Due to this fact and to the existence of a similarity solution rotating disk flow is widely used as a
prototype for studing more complex configurations where cross flow velocity components exist.
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Among the several system configurations for which rotating disk flow is a prototype (Barcia (2000), Anjos (2007) and
Oliveira (2011)), the solution has been widely adopted in the study of the hydrodynamics of electrochemical cells using
rotating disk electrodes.

In particular, the solution has been used for more than 20 years by the group of applied electrochemistry of the
Metallurgy and Material Engineering Graduate Program (PEMM/COPPE) to adress phenomena observed in cells using
rotating disk electrodes. The experimental setup of electrochemical cells typicaly comprises a rotating disk electrode
with diameter about 10 mm, which dissolves in the 1MH2SO4 electrolyte solution. For typical angular velocities of
the electrode, the thickness of von Kármán’s boundary layer is 8-15 times smaller than the electrode diameter. In this
condition the flow close to the surface can be approximated by von Kármán’s solution.

Barcia (2000) proposed that the dissolution of the iron electrode leads to the existence of a viscosity gradient aligned
to the electrode axis, and that this gradient could drive the current instability observed at the beginning of the current
plâteau. Linear stability analysis performed by Pontes J. (2004) and Mangiavacchi N. (2007) and numerical analysis
conduted by Anjos (2007), Oliveira (2011) provide further evidence that the dependency of the electrode viscosity on the
concentration of the iron electrode reduces the flow stability indeed.

Given the importance of von Kármán’s solution in the study of the hydrodynamics of electrochemical cells it is clear
that a knowledge of the effects of the dimensions of the cell on the flow close to the electrode is of paramount importance.

We propose to proceed with previous works of Anjos (2007) and Oliveira (2011), concerning the study of the hydrody-
namic field of close to rotating disk, using a finite element approach. These works were developed following the stability
analysis performed by Pontes J. (2004) and Mangiavacchi N. (2007), which in turn, were motivated by the work conducted
in our group The main idea of the present work consists in finding the influence of a finite domain in the velocity profiles
developed in the neighborhood of a rotating disk electrode.

The main goals of this work are as follows: observe the influence of the ratios cell radius/disk radius and cell depth/disk
radius on von Kármáns profiles. Specificaly, we are interested in finding how the axial velocity profiles change along the
radial direction, in particular, close to electrode surface.

The full Navier-Stokes equations will be solved with a numerical Finite Element code (FEM) featuring a scheme based
on Galerkin method for spatial discretization of the diffusive and pressure terms, a scheme based on Semi-Lagrangian
method for discretization of the susbtantial derivate (Dv/Dt), forward first order representation of time derivatives and a
scheme based on the projection method for solving the linear algebraic systems.

The domain is considered fixed and the following boundary conditions are adopted: no-slip condition on the walls
v = v(x, t) = 0; pressure and velocity in the direction z at the interface electrolyte/air are zero; p = p(x, t) = 0, vz = 0.

The numerical tests were performed with appropriate selection of domain dimensions and mesh parameters, namely,
cell dimensions and mesh refinement, taking into account previous experience of our group.

2. GOVERNING EQUATIONS

The Navier-Stokes and the continuity equations in the nomdimensional form read:

∂v
∂t

+ v · ∇v = −1

ρ
∇p+

1

Re
∇ ·
[
ν
(
∇v +∇vT

)]
(1)

where v, p and ν are the fluid velocity and pressure and kinematic viscosity, respectively. Re = r(Ω/ν)1/2 is the
Reynolds number of the problem, where r is the dimensional radius of the domain and Ω, the angular velocity of the disk.
Re is thus, the nondimensional radius of the domain. Further details of variables adimensionalization are given by Anjos
(2007).
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Boundary and initial conditions

The adoption of proper initial and boundary conditions is essential for the formulation of any problem modeled by
PDE’s. We apply the following conditions on rigid boundaries;

1. For the initial condition we set the velocity of the fluid to zero in all grid points, except in points located at the disk
surface, where we prescribe the angular velocity of the disk, by specifying the corresponding Reynolds number.

2. No-slip condition: viscous flow is defined for the normal component of velocity (vn) and the tangential components
(vt1 and vt2) in the solid walls are zero, in obedience to the fact that the fluid immediately adjacent to the wall is in
repose in relation to it.

3. Inflow condition: used in boundaries where there is fluid entering the system.

4. Outflow condition: is used where there fronteas system fluid outlet. Once the governig equations are defined, boundary
and initial conditions must be prescribed, in order to solve the problem.

3. FINITE ELEMENT METHOD

The fluid flow is given by the equations v = v(x, t) and p = p(x, t) defined in Ω×[0,T] when Ω ⊂ Rm, so for the
the governing equations (1) with v = vΓ on Γ1, vt = 0 and σnn = 0 on Γ2, where Γi, i = 1, 2, 3 are respectively the
boundary velocity and pressure.

The above expressions are given in nomdimensional form, is important to note that gravity is being depreciated.
The space of the test functions is given by S :=

{
u ∈ H1(Ω) | u = uc em Γc

}
and the space weighting functions is

represented as V :=
{

w ∈ H1(Ω) | w = 0 em Γc
}

, where uc is an essential boundary condition for a given contour Γc,

H1(Ω) :=

{
u ∈ L2(Ω)

∣∣∣ ∂u
∂xi
∈ L2(Ω), i = 1, . . . , n

}
, L2(Ω) is the Lebesgue’s space, which in turn, is the space of

square-integrable functions, given by L2(Ω) :=
{

u := Ω→ Rn
∣∣∣ (∫Ω |u|2dΩ

)1/2
<∞

}
.

Expressing the convective term as
Dv
Dt

=
∂v
∂t

+ v · ∇v, the weak formulation for the Navier-Stokes equations can be
expressed in the bilinear form:

m

(
Dv
Dt

,w
)
− g(p,w) +

1

Re
k(ν; v,w) = 0, (2)

d(q, v) = 0, (3)

Equations (2) and (3) are expressed in matrix form:

Mȧ +
1

Re
Ka−Gp = 0, (4)

Da = 0, (5)

where:

M =

 Mx 0 0

0 My 0

0 0 Mz

 K =

 KX Kxy Kxz

Kyx KY Kyz

Kzx Kzy KZ


KX = 2Kxx + Kyy + Kzz, KY = Kxx + 2Kyy + Kzz, KZ = Kxx + Kyy + 2Kzz

G =
[
Gx Gy Gz

]T
, D =

[
Dx Dy Dz

]
,

ȧ =
[
u̇ v̇ ẇ

]T
, a =

[
u v w

]T
.
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Semi-Lagrangian method applied to the Navier-Stokes equations

Using the semi-Lagrangian method to the convective term we obtain
Da
Dt

=
an+1
i − and

∆t
, thus, Eqs. (2) and (3)are

transformed into:

m

(
an+1
i − and

∆t
,w
)
− g(pn+1,w) +

1

Re
k
(
ν; an+1,w

)
= 0, (6)

d(q, an+1) = 0, (7)

for all w ∈ V0 and q ∈ P0, where and = an(xd, t
n), and xd is called starting point, in time tn ≤ t ≤ tn+1 with the initial

condition x(tn+1) = xi. Therefore the matrix system is:

M
(

an+1
i − and

∆t

)
+

1

Re
Kan+1 −Gpn+1 = 0 (8)

Dan+1 = 0 (9)

4. VON KARMAN’S NONDIMENSIONAL VELOCITY PROFILES

Figure 2. Nondimensional profiles F, G and H,
describing the dependence of the velocity compo-

nents in rotating disk flow.

Solution of von Kármán’s equation for constant viscosity fluids
leads to curves of nondimensional profiles F, G and H as shown
in Fig 2: The main idea is to solve the full PDE’s by Finite El-
ement Method with boundary conditions given in Eq.1 and obtain
the local nondimensional profiles F, G and H, according to the for-
mulæ given by Equations 10- 12 at specified radial positions and in
different acomplished time steps. The velocity profiles obtained will
be compared with von Kármán’s original ones.

F =
vr
rΩz∗

, (10)

G =
vθ
rΩz∗

, (11)

H =
vz

(νΩ)1/2z∗
, (12)

System configurations

Figure 3. A scheme of the grid used in the two
simulations presented in this work.

We present the preliminary results of two simulations, which are
currently still running. In both, we assume a rotating disk electrode
with the lower surface placed at the interface electrolyte/air. The do-
main radius is equal to the Reynolds number of the simulations. All
dimensions are made nondimensional with von Kármán’s character-
istic legnth, (ν/Ω)

1/2. A scheme of the grid is shown in Fig. 3. The
grid consists of a series of regular polygons with center at the z axis,
the number of edges of the inner polygon (polygon #1) being speci-
fied. The number of edges of the following ones increases by a factor
equal to the polygon number. In addition, we specify the number of
points along the radial and the axial directions. Points along the radial
direction are uniformly spaced. In the axial direction, we adopted a
non uniform distribution of points. For the first simulation, the num-
ber of edges of the inner polygon, the number of points along the radial direction and the number of points along the axial
direction are 6, 20 and 60, respectively. For the second one, the figures are 6, 20 and 57, respectively.
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We monitored the nondimensional velocity profiles, as defined by Eqs. 10, 11 and 12 at three radius denoted r1, r2

and r3 . The domain configuration and dimensions for the two simulations are specified in Fig. 4.
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Figure 4. System configuration and main parameters

5. PRELIMINARY RESULTS

Preliminary results are presented in Figs. 5 and 6. Flow simulations were made with parameters given in Fig. 4. The
velocity profiles were converted in the nondimensional profiles F , G and H at three radial positions r1, r2 and r3, in
different times and ploted with the steady profiles obtained by numerical integration of von Kármán’s system of ODEs.
The grid points along the axial position are shown in the profiles obtaned from the FEM simulation.

Both figures contain three columns, each one with von Kármán’s original profiles and those obtained at one of the
radial positions r1, r2 and r3, but at different times. Higher values of the radial coordinate result in higher local Reynolds
numbers and in a progrssive reduction of the stability of the stationary profiles. In consequence, in regions where the
stable solution consists of steady state von Kármán’s profiles, these profiles are progressively attained from inner to outer
radius. This is indeed what we observe in Fig. 5. In this simulation the maximum Reynolds number at the rotating disk
is Ree = 8.33, a value that places the whole disk in a region where perturbations are damped and the steady profiles are
stable. Clearly, the staedy state is attained first at the inner radius. Of course, the profileH , associated to the axial velocity
vz deviates from von Kármán’s profiles for large values of Z, due to the finite domain of the simulation.

Fig. 6 presents the preliminary results of a simulation not yet concluded at the present date, and run at higher Reynolds
numbers. In this case, the Reynolds number attained at the disk external radius is Ree = 60, a value for which linear
stability analysis point to the existence of undamped perturbations. An inspection of the profiles presented in this figure
suggest that the steady state may not be attained at outer radius, or at least, that it will not be attained monotonically.

Proceeding with the present work we intent to adopt a more refined grid close to the disk surface and investigate the
effect of different domain radius and depths.



Proceedings of the ENCIT 2012
Copyright c© 2012 by ABCM

14th Brazilian Congress of Thermal Sciences and Engineering
November 18-22, 2012, Rio de Janeiro, RJ, Brazil

Figure 5. Simulation 1: von Kármán’s original profiles F ,G andH and same profiles obtained with Eqs. 10, 11 and 12 for
a domain and a disk Reynolds number Re = 50 and Ree = 8.33, respectively. First column contain profiles at r1 = 2.5;
Second column: r2 = 5.0; Third column: r3 = 7.5. Rows 1 to 5 correspond, respectively, to 1, 20, 100, 400 and 605

integration time steps. Row 6 correspond to 605 time steps and showthe −H profile obtained for the entire domain.
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Figure 6. Simulation 2: von Kármán’s original profiles F , G and H and same profiles obtained with Eqs. 10, 11 and
12 for a domain and a disk Reynolds number Re = 300 and Ree = 60, respectively. First column contain profiles at
r1 = 15; Second column: r2 = 30; Third column: r3 = 45. Rows 1 to 4 correspond, respectively, to 1, 20, 100 and 400

integration time steps. Row 5 correspond to 400 time steps and show the −H profile obtained for the entire domain.
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