
ERROR ANALYSIS OF ONE- AND TWO-LEVEL TIME-STEPPING
SEMI-LAGRANGIAN INTEGRATORS IN MIXED-FE SPACES

Gustavo Peixoto de Oliveira, gustavo.oliveira@uerj.br
Group of Environmental Studies in Water Reservoirs, State University of Rio de Janeiro, R. Fonseca Teles, 121, São Cristóvão, Rio de
Janeiro, RJ, Brazil, 20940-903
Eberson Moraes, ebersonsm@yahoo.com.br
Metallurgy and Materials Engineering Department, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil, PO Box 68505,
21941-972
José Pontes, jose.pontes@uerj.br
Gustavo Anjos, gustavo.anjos@uerj.br
Norberto Mangiavacchi, norberto@uerj.br
Group of Environmental Studies in Water Reservoirs, State University of Rio de Janeiro, R. Fonseca Teles, 121, São Cristóvão, Rio de
Janeiro, RJ, Brazil, 20940-903

Abstract. Numerical simulations comparing the accuracy of trajectory integrators are presented in this paper through a
qualitative error analysis. The core methodology presents one- and two-level schemes to be applied for incompressible
flow problems discretised by the Taylor-Hood’s MINI element. Emphasis is given to a time-stepping algorithm which
seeks intermediary values of the advected quantity to capture precisely the trajectory of particles. Analises are organized
regarding numerical tests that bring up the overall differences associated to each of the semi-lagrangian integrators.
Comparisons take into account the advection of a scalar concentrate over a two-dimensional domain when submitted to a
rotating velocity field, thereby highlighting the advantages of the sub-step integrator for simulating flows that experience,
mainly, swirling or curved motions.
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1. INTRODUCTION

Fluid particles traveling amongst stirred fluid motion undergo abrupt changes of position in space. Some examples of
such phenomenon occur eventually by diffusion of pollutants over the atmosphere, deposition of contaminant matter on
effluents, and mixture of substances in chemical reactions. Consequently, the modelling of the advective transport plays a
fundamental role in promoting accurate tracking of particles.

The principal motivation of this work stems from the problem of the chemical dissolution taking place at the inferior
border of the working electrode in electrochemical cells, better described as the region of centrifugal expulsion caused by
the rotative motion of the cylindrical rod embedded in epoxy resin described in the paper by Barcia et al. (2008). Finite
element techniques applied to this problem, e.g. Anjos et al. (2014), have lead the authors of this paper to the study of
different semi-lagrangian approaches in FE’s scope, such as in Oliveira et al. (2015), Oliveira et al. (2011a), Oliveira et al.
(2011b).

Many numerical algorithms to deal with the semi-lagrangian (SL, from now on) advection evolved from finite differences
practitioners, e.g. McDonald (1986), Staniforth and Côté (1991), Smolarkiewicz and Pudykiewicz (1992), and Bonaventura
(2004) until being integrated into a combined SL/FE methodology by FE’s devotees. One of the first insertions of SL/FE
codes applied to the Navier-Stokes equations appeared in the work by Pironneau (1982). Later on, other authors published
many papers with SL variations for different problems. For instance, studies of convection-diffusion and unsteady problems
were carried out by Allievi and Bermejo (2000); a second-order scheme based on a Operator Integration Factor Splitting
(OIFS) was implemented by Xiu et al. (2005); Discontinuous Galerkin techniques were studied by Restelli et al. (2006), to
cite a few. More recently, we could cite Henke et al. (2014) who developed SL strategies to deal with interface problems
discretized by extended finite element (XFEM) spaces and El-Amrani and Seaïd (2012) who used a L2− interpolation to
circumvent weaknesses found in the classical approaches by calculating trajectories for all the quadrature points belonging
to the element.

This paper is focused on the comparison of the accuracy of trajectory integrators based on a SL/FE methodology
accomplished by the error analysis between one- and two-level schemes implemented in a mixed scope based on the
classical MINI element used to discretize incompressible flow problems Arnold et al. (1984). An Adams-Bashfort two-step
method is employed to compute intermediary values of the advected quantity to capture precisely the path of particles
experiencing, specially, swirling or curved motions. Paper’s outline is given as follows: Sec. 2 gives an overview of
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the SL method inside the finite element scope as well as of the methodology applied in the numerical results; Sec. 3,
in turn, presents qualitative analyses and error comparisons regarding the two trajectory integrators implemented in the
computational code. To conclude, Sec. 4 summarizes the main results obtained.

2. SEMI-LAGRANGIAN APPROXIMATION AND FINITE ELEMENTS

2.1 Generalities

Some general concepts are introduced here according to Pironneau (1982) and Ciarlet (1978) in order to relate the
SL/FE method in preparation for the coming sections. We denote by Ω ⊂ Rm a spacial domain with boundary ∂Ω = Γ for
which Ω = ∪Jj=1Kj , with K̊c ∩ K̊d = ∅ ∀c, d and simplices K. Furthermore, xj , 1 ≤ j ≤ m+ 1 is an element vertex (or
a mesh vertex) and the triplet (K,P,Σ) a finite element, for a set of polynomial or quasi-polynomial functions P and a set
of degrees of freedom Σ. Additionally, let τ = ∪Nn=0[tn, tn+1] be the union of finite time intervals, so that ∆t = tn+1− tn.

2.2 Semi-lagrangian method

The gist of the SL method is to seek an accurate discrete representation of the substantial derivative

D(·)
Dτ

=
∂(·)
∂τ

+ v · ∇(·), (1)

which is present in several transient systems dominated by advection phenomena, by integrating the characteristic lines
X(x, τ) that solve the differential equation

dX(x, τ)

dτ
= v(X(x, τ), τ) (2)

backward-in-time through the velocity field v and spatial position x. Discretely, a FE-based approximation of Eq. 2 allows
us to write

dXh(xj , t)

dt
= vh(Xh(xj , t), t) (3)

for an h−refinement of mesh, so that, when applied to an arbitrary scalar field φ, Eq. 1 can be also approximated by

Dφh
Dt
≈
φn+1
h − φnh,d

∆t
, (4)

where φnh,d is the value of the field at the so called departure point of the fluid particle’s trajectory. The backward-in-time
integration stems from the numerical evaluation of the expression

X(x, tn) = x−
∫ tn+1

tn
u(X(x, τ) dτ, (5)

whose simplest first-order approximation in the context presented here is

xnd = xn+1
j − vh(xnj )∆t. (6)

More precisely, the SL method is intended to find an optimal approximation through the combination of interpola-
tion/integration techniques for each time step ∆t. While the usual attempt is to use a first-order algorithm like Eq. 6 to
capture the trajectories of the particles being advected throughout the flow field, higher order methods relating space and
time give rise to better choices to model such phenomenon. Generally, the departure point xnd does not coincide with a
mesh vertex, so that φ(xnd ) = φ(xd, t

n) should be determined by means of a suitable interpolation provided by the FE
spaces.

2.3 MINI element’s spaces and interpolation

The MINI element’s spaces resort to a combination of function spaces intended to evaluate velocity and pressure fields
in a mixed nature of fluid flow simulations whose simplex KMINI is a triangle or tetrahedron. Coupled or decoupled scalar
fields, if added to the problem under study, are approximated in the same way as the pressure field. Therefore, in terms of
the fluid flow applications envisioned here, the mixed function space associated to the MINI element is given by

PMINI := Pv ∪ Pφ, (7)
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where Pv is the space of shape functions for velocity and Pφ the space of shape functions for pressure and scalar fields -
theory on MINI element’s spaces is found e.g. in (Brezzi et al., 2008, p.69). Similarly, the set of degrees of freedom of this
element is given by the union

ΣMINI := Σv ∪ Σφ, (8)

or

ΣMINI := {v(x̌), η(xj); 1 ≤ j ≤ m+ 1}, m = 2, 3, η = v, φ. (9)

where each xj is a vertex of the element and x̌ the centroid, meaning that Σ has up to 14(23) degrees of freedom of
velocity and scalar points to be evaluated per element if m = 2(m = 3). In turn, the MINI element is formed by the triplet
(KMINI ,PMINI ,ΣMINI).

In the context of the SL approach, interpolations of the physical quantities are required to compute values located at
intermediary spacial or temporal positions as seen in Bartello and Thomas (1996) or Bonaventura (2004). Given that Pv is
an enriched space with the so-called “bubble functions”, a higher order of interpolation is reached for the velocity field
whereas the scalar fields are interpolated with linear shape functions. Regarding spacial coordinates - unless exceptions for
interpolations over edges that require m nodes -, for an interior point x∗ of any mesh element, we compute

v(x∗) = v(x̌)P̌ +

m+1∑
j=1

v(xj)Pj , with P, P̌ ∈ Pv and φ(x∗) =

m+1∑
j=1

φ(xj)Qj , with Qj ∈ Pφ, m = 2, 3. (10)

2.4 Two-level time-stepping algorithm

It is known that the key steps in the practice of any SL method can be summarized in: i) at a given time tn, compute
for each mesh point xj an approximate solution of Eq. 2 to determine an estimated departure point and ii) interpolate
the quantities required at the intermediary points for posterior advection. Many numerical schemes were combined to
calculate both the trajectory integration and interpolation, such as those presented in Allievi and Bermejo (2000), Xiu and
Karniadakis (2001) and El-Amrani and Seaïd (2012), in the form of algorithms based on multistep techniques.

An one-level scheme considers a single departure point obtained for each time step [tn, tn+1] whereas a two-level
scheme makes use of a sub-step to correct the linear search and recover a higher order SL alternative on space-time
discretization. Two schemes are studied in this paper, namely: SL1, the first-order backward-in-time integrator given by
Eq. 6, and SL2, a backward-in-time integrator whose search algorithm is given as follows: for each mesh vertex xj ,

• do a backward integration to find the intermediary departure point xn−
1
2

d = (xd, t
n− 1

2 );

• interpolate to compute the intermediary velocity vh(xd, t
n− 1

2 );

• do a second backward integration to find the departure point xnd ;

• compute φ(xnd ) by interpolation and advance to the next time step.
This two-step algorithm is written mathematically as: ∀j = 1, 2, . . . , J ,

I : x
n− 1

2

d = xn+1
j − ∆t

2

[
3v(xj , t

n)− v(xj , t
n−1)

]
(11a)

II : vh(xd, t
n− 1

2 ) = v(x̌e, tn)P̌ e +

m+1∑
i=1

v(xei , t
n)P ei , ∀ element e; (11b)

III : xnd = xn+1
j − ∆t

2

[
2v(xj , t

n)− v(xj , t
n−1) + vh(xd, t

n− 1
2 )
]

(11c)

IV : φh(xd, t
n) =

m+1∑
i=1

φ(xei , t
n)Qej , ∀ element e. (11d)

3. NUMERICAL RESULTS

3.1 Particle trajectory integration

As a primary test, the two-dimensional trajectory of a unique particle was computed by using the SL1 and SL2
algorithms in three tests that consider different time steps (see Table 1) whose results are organized in Fig. 1. The marked
points represent the initial positions (stars) from which the particle was traced and the final points (circles) up to the
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Figure 1: Comparison of trajectory tracking by the integrators SL1/SL2 for n ≤ π/∆t: (a) ∆t = 0.01; (b) ∆t = 0.05; (c)
∆t = 0.1.
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Figure 2: Comparison of trajectory tracking by the integrators SL1/SL2 for n ≤ 2π/∆t: (a) ∆t = 0.01; (b) ∆t = 0.05; (c)
∆t = 0.1.

computation was performed through the SL1 integrator (blue color) and the SL2 integrator (black color) with a number of
iterations limited to n ≤ π

∆t . Analogously, Fig. 2 depicts the trajectories integrated with a number of iterations limited to
n ≤ 2π

∆t . As seen, the inaccuracy of SL1 to capture the trajectories in comparison to SL2 renders clearer as ∆t increases. A
relatively high dissipation from the center outward manifests concomitantly the loss of the circular motion imposed by the
velocity field, while the integration through SL2 shows a more restrained and less dissipative circular behaviour.

3.2 Concentrate in rotating flow

In a secondary experiment, the advection of a concentrate in rotating flow was implemented in a FE C++ code to afford
a more robust numerical analysis. The problem is now described as follows: let Ω× τ = [0, 1]2 × [0, Tf ] be the space-time

1
X_phi(x)

0

Figure 3: Image of the function χφ which defines the scalar concentrate region C.

domain of a two-dimensional unit cell and χφ(x) the characteristic function of the scalar concentrate defined as

χφ(x) =

{
1, if x ∈ C
0, otherwise, (12)
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Table 1: Testing setup of time step and final angle for the analysed simulations.

Test ∆t θK
1 0.01 3π
2 0.05 3π
3 0.1 9π/2

where C is a circle of radius r = 0.1 with center at xC = (0.0, 0.75). The region C, represented by the image of χφ in
Fig. 3, is submitted to a rotating flow started up from the rest to a purely advective motion modelled by the inviscid Burgers’
equation

∂φ

∂t
+ v · ∇φ =

∂φ

∂t
+ y

∂φ

∂x
− x∂φ

∂y
= 0, (13)

for v = (ωy,−ωx) and a unitary angular velocity ω. Equation 13 is discretized by the MINI FE spaces as discussed
previously via the Galerkin method and solved with slip boundary conditions that satisfy v · n = 0, at Γ = ∂Ω, so that
φh(x, t) is the approximate field to be analyzed.

3.3 Error analysis

The global relative error Eθk computed in the L2-norm was evaluated at certain time instants tn for which the central
point xC of the rotative concentrate reached the normal angles θk and obeys the following expression

Eθk(Ω) =

∫∫
Ω

[φθk(x)− φh,θk(x)] dxdy∫∫
Ω
φθk(x) dxdy

, x ∈ Ω, with θk = θC + k
π

2
, k ∈ Z+, (14)

for the initial angle θC . Only for the test 3, K = 9; for the tests 1-2, K = 3. Tables 2-4 give an overview of the error Eθk
measured for the SL1 and SL2 methods in the MINI element space. The reason to allow a wider angular displacement for
the test 3 stems from the observation of the error behaviour with time in the experiment itself. As expected of SL2, bigger
step times produce a more evident improvement over the SL1 integrator. Such assertive is according to the plots in Fig. 4
which, for the test 3, accounts for a mean percentage difference of about 82% in the curves of Eθk .

Table 2: Error comparison between SL1 and SL2 integrators for the test 1.

Angle (θk) Iteration (n) Eθk - SL1 Eθk - SL2
π/2 154 0.054310 0.053298
π 313 0.208977 0.205536

3π/2 470 0.335340 0.331452
2π 630 0.436851 0.429467

5π/2 785 0.506284 0.498224
3π 943 0.564535 0.556202

Table 3: Error comparison between SL1 and SL2 integrators for the test 2.

Angle (θk) Iteration (n) Eθk - SL1 Eθk - SL2
π/2 30 0.000011 0.000100
π 62 0.002386 0.001564

3π/2 93 0.021711 0.013935
2π 125 0.061984 0.041719

5π/2 156 0.116284 0.076437
3π 188 0.177193 0.119457

Further comparisons can be done by examining the dissipation of the concentrate with time while it travels in a
circular-to-spiral motion. Whether the characteristic function is taken as variable, it is observable that the region C
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Table 4: Error comparison between SL1 and SL2 integrators for the test 3.

Angle (θk) Iteration (n) Eθk - SL1 Eθk - SL2
π/2 15 0.000064 0.000014
π 31 0.000128 0.000028

3π/2 46 0.001375 0.000174
2π 62 0.009521 0.001609

5π/2 78 0.032484 0.008655
3π 94 0.086187 0.027666

7π/2 109 0.134180 0.024918
4π 125 0.201191 0.044946

9π/2 141 0.273773 0.076148
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Figure 4: Error curve Eθk for each simulation: (a) test 1; (b) test 2; (c) test 3.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)
Figure 5: Comparison of the concentrate dissipation with time for each integrator: (a) n = 31 - SL1; (b) n = 31 - SL2; (c)
n = 46 - SL1; (d) n = 46 - SL2; (e) n = 62 - SL1; (f) n = 62 - SL2; (g) n = 78 - SL1; (h) n = 78 - SL2; (i) n = 94 -
SL1; (j) n = 94 - SL2; (k) n = 109 - SL1; (l) n = 109 - SL2; (m) n = 125 - SL1; (n) n = 125 - SL2; (o) n = 141 - SL1;
(p) n = 141 - SL2.
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experiences a marked decay of concentration. Figure 5 displays, at left, the image of χφ(C) on the plane z = 0 evaluated
for different time instants of the test 3 simulated by calling the integrator SL1, whereas, at right, the image is displayed
for the integrator SL2. Besides, note from the Fig. 6 that, for the same test, the initial cylindrical shape of the image of
χφ(C) turns into a “hill” shape along the motion, thus characterizing the higher dissipation of the concentrate for SL1.
The pictures refer to frozen profiles of the concentrate over the axis y at θk = {π, 2π, 3π}.

(a)

(b)

(c)
Figure 6: Frozen profiles of χφ(C) over the axis y for the SL1 and SL2 integrators (a) θk = π; (b) θk = 2π ; (c) θk = 3π.

4. CONCLUSION

This paper studied the advantages of having a two-level scheme intended to model advection phenomena in fluid flow
simulations with higher accuracy. By combining techniques of interpolation and integration, the particle trajectories could
be traced differently so as to highlight improvements concerning the backward-in-time integration.

A two-dimensional test considered the rotative motion of a scalar concentrate as the framework to analyze the error of
the two approaches applied for different time steps. The main conclusion we can draw is that the two-level scheme ensures
better accuracy of integration for longer time steps, as expected for a SL method in practical terms. Such result are mainly
due to the interpolation method applied which takes intermediary values in space and time.

Although qualitative experiments were reported here, more robust tests as well as numerical analyses are still required
in terms of mesh convergence, inclusion of viscous effects, different flow conditions and extension to three-dimensional
simulations. Additionally, the study of the SL2 approach for advection of the own velocity field needs to be expanded.
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