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Abstract. This paper presents a numerical approach to a model describing the pattern formation by ion beam sputtering
on a material surface. This process is responsible for the appearance of unexpectedly organized patterns, such as ripples,
nanodots and hexagonal arrays of nanoholes. A numerical analysis of preexisting patterns is proposed to investigate
surface dynamics, based on a model derived from a anisotropic damped Kuramoto-Sivashinsky equation, in a two dimen-
sional surface with periodic boundary conditions. While deterministic, its highly nonlinear character gives a rich range
of results, making it possible to describe accurately different patterns. A finite-difference semi-implicit splitting scheme is
employed on the discretization of the governing equation. Simulations were conducted with realistic coefficients related
to physical parameters (anisotropies, beam orientation, diffusion). The stability of the numerical scheme is verified with
time step and grid spacing tests for the pattern evolution. Hexagonal patterns were obtained from a monomodal initial
condition for a higher value of the damping coefficient ↵, while spatiotemporal chaos appeared for lower values. The
hexagonal ordered character of the structure was shown to be directly proportional to ↵.
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1. INTRODUCTION

Sputtering is a phenomenon which leads to the ejection of atoms from a solid surface, as a result of an ion beam
incidence or glow discharge. It is a technique which operates in nonequilibrium conditions, permitting the processing
of nano-structures beyond the limitations imposed by equilibrium thermodynamics. The present endeavor is interested
in the spontaneous well-ordered periodicity developed by ion beam sputtering, which appears over a large area under
certain conditions (Chason and Chan, 2010). Modeling the nonlinear evolution of sputter-eroded surfaces is an ongoing
mathematical challenge. Our effort aims toward the development of a numerical scheme to solve an anisotropic Kuramoto-
Sivashisnky equation with realistic coefficients, since it produces a rich zoology that can be adjusted to represent the
aforementioned erosion dynamics.

If the energy of the incident ion is sufficient, a train of collision event may be established, resulting in the removal
of atoms from the solid surface. The morphology of the surface can drastically change due to these sputtered atoms,
and it may result in the formation of unexpectedly organized patterns, such as ripples, nanodots and hexagonal arrays of
nanoholes (see Ghoniem et al. (2015), Mollick et al. (2014) and Wei et al. (2009)). Valbusa et al. (2002) discussed the
interplay between ion erosion and vacancies on the surface re-organization, which would explain some of the patterns
experimentally detected. The rate of energy deposition is a crucial parameter for the mechanisms, since high values can
lead to a local transient melting of the surface (Mollick et al., 2014), alongside the possibility of ion implantation.

The Kuramoto-Sivashinsky equation appears from the continuum theories, in their attempt to describe surfaces eroded
by ion bombardment, which would ultimately reproduce ripple formation and other organized patterns behavior. This
equation was initially formulated to describe flame fronts and chemical waves (Makeev et al., 2002), being capable of
producing a great variety of morphologies for its highly nonlinear and deterministic character. Rost and Krug (1995)
describe the equation as being remarkable for the stabilization of the linear instability by the nonlinear term. This sta-
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bilization makes the equation a good candidate to represent the complexity behind the structure formation on sputtered
surfaces, with a dynamic transiting between different regimes.

We propose a finite-difference semi-implicit splitting scheme of second order in time and space to numerically solve
an anisotropic damped Kuramoto-Sivashinsky (DKS) equation subjected to periodical boundary conditions. The domain
is a two dimensional surface defined by a height function h(x, y, t), whose evolution in time is monitored. Internal
iterations are used inside each time step to enhance the approximation of the nonlinear term. Previously, a similar numer-
ical scheme was successfully implemented for the Swift-Hohenberg Equation by (Christov et al., 1997) and citepchris-
tov2002numerical, which also dealt with the challenges of high-order spatial derivatives and nonlinearity.

The stability of the numerical scheme is verified with time step and grid spacing tests for the pattern evolution, and
the simulation results are discussed based on the sputtering physics, previous studies regarding the damping effect on
the DKS equation and linear stability analysis predictions. Hexagonal patterns were obtained from a monomodal initial
condition in the ~1

x

direction for a higher value of the damping coefficient ↵, while spatiotemporal chaos appeared for
lower values. The hexagonal character of the structure was shown to be directly proportional to ↵, even for spatiotemporal
chaos results.

2. MATERIAL AND METHODS

2.1 Governing Equations

The present study proposes a second order in time finite difference numerical scheme for solving modifications of
the generalized Kuramoto-Sivashinsky equation (Sigmund, 1969; Bradley and Harper, 1988; Cuerno and Barabási, 1995;
Valbusa et al., 2002; Makeev et al., 2002). For the case of isotropic energy distribution, considering an ion beam with
angle of incidence ✓ with respect to the normal of the surface, one dimensionless and simplified form of the equation
reads:
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where h̄ and ⌧ are, respectively, the surface height function of the external atom layer and the time dependency of
the transient model, with X and Y as the domain space coordinates. The function c represents the cosine of the incident
angle ✓. Equation 1 presents a damping term �↵h̄ , with ↵ being a damping coefficient, contributing to the smoothening
of the surface (Keller and Facsko, 2010). Finally, K takes into account the surface diffusion effects, which varies with
temperature. The parameters µ, µ
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Here, s is the sine of ✓ and a

µ

is the ratio between the ionic penetration depth and the width of energy distribution. In
order to solve Equation 1, the following second order in time Cranck-Nicholson semi-implicit scheme was adopted:
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The superscript (n+ 1) refers to the current time and (n) to the previous one. The operators ⇤n+1/2
X
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and the
function f

n+1/2 are defined as:
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2.2 Internal Iterations

Internal iterations at each time step are required to secure the approximation for the nonlinearities taking part in the
scheme of Equation 2. The iterations loop will continue until convergence is attained from monitoring the L1 norm.
There is a trade-off related to the time step �⌧ : for a larger �⌧ , convergence will be impaired and the number of internal
iterations will increase, while a smaller �⌧ will impact on a smaller number of iterations, but it will imply on a greater
number of time steps. The internal iterations scheme reads:
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where the index m refers to the internal iteration number. The superscript (n,m+1) identifies the new iteration, while
(n) are the values of the previous time step. The superscript (n + 1) for the nonlinear term in the function f

n+1/2 will
be replaced by (n,m), which stands for the values obtained from the previous iteration. The iterations proceed until the
following criterion for the L1 norm is satisfied:

L1 =
max |h̄n,m+1 � h̄

n,m|
max |h̄n,m+1|

< 10�7 (4)

for all points of the grid for a fixed m. The function h̄

n+1 for the current time will be acquired from h̄

n,m+1,
proceeding to the last iteration.

2.3 The Splitting Scheme

The splitting of Equation 2 is made according to the second Douglas scheme (Douglas and Rachford, 1956; Yanenko,
1971). Such strategy has been chosen to deal with the costly procedure of solving Equation 2; even though we are working
with sparse matrices for the operators, the internal iterations cause the process to be repeated several times during each
time step. This problem welcomes an attempt to minimize the operations per unit iteration, as follows:
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Here, ˜̄h is the height function for the half-time step. Not only can it be shown that the splitting represents the original
scheme, but it is also more stable than the original.

2.4 Scheme Stability

One important issue which concerns the simulations is the time and mesh size selection, since we must maintain the
semi-implicit scheme stable. Here, we study the time step and grid spacing variation effect regarding the pattern evolution,
which is translated by the L1 norm curve. The computational effort was also measured, being related to the number of
internal iterations when comparing results for a same grid spacing.

1. Case 1: �X = 2, 64⇥64 points in a domain 128⇥128
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2. Case 2: �X = 1, 128⇥128 points in a domain 128⇥128

Both cases start with a monomodal initial pattern q

o

~1
x

, presenting four wavelengths in the domain. The critical
wavelength (related to critical wavenumber q

c

) is approximately 18: each of them would be represented by 9 points for
Case 1 and by 18 points for Case 2. The parameters adopted for the tests are displayed in Table 1.

Table 1: Parameters value and description

Parameter Value Description

↵̄ 0.15 damping coefficient

K̄ 5 surface diffusion effects

✓ 30� beam’s angle of incidence

a

µ

4 penetration depth/width of energy distribution

During the simulations, we monitored the pattern’s rate of evolution by the L1 norm, which indicates how fast the
structure is changing between the current and previous time step, normalized by the spatial average of the modulus of the
surface height. This norm is denoted as:
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We assumed a pattern as stationary if the criteria L1 < 10�7 was reached for the temporal evolution. On the other
hand, the simulation would be stopped if the L1 curve demonstrated clearly a behavior converging to a fixed value (or
oscillating around it).

Figure 1 compares the structure evolution through the L1 norm to observe when the results would diverge for an
increasing time step.
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Figure 1: L1 norm as a measure for stability regarding time step

From Figure 1a (Case 1) we observe slight deviations in the L1 norm evolution for �⌧ = 2.0 when comparing to
inferior time steps values, while �⌧ = 5.0 diverges completely from the others. Regarding Figure 1b (Case 2), the
divergence for �⌧ = 5.0 is also clear, but it’s more coherent with the smaller time steps than Case 1, as expected from
a more refined mesh. This time, �⌧ = 2.0 is more consistent with the smaller ones, and would be accepted for the
simulations. Even so, we decided to operate with �⌧ = 1.0 for �X = 1, which is a more conservative approach.

3. RESULTS AND DISCUSSION

This study adopted the aforementioned time splitting finite-difference method to compare results for the two-dimensional
DKS equation under 3 circumstances: ↵ = 0, ↵ = 0.05 and ↵ = 0.15. The mesh consisted of 512 ⇥ 512 points with a
harmonic monomodal initial pattern in the ~1

x

direction (~q = q

o

~1
x

), a small amplitude of 0.1, and parameters ✓, K and a

µ
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as found in Table 1. Since the side of the domain is L
x

= L

y

= 512, and the linear stability analysis reveals a value of
�

c

= 18 for the critical wavelength corresponding to the maximum growth rate in the ~1
x

direction, each wavelength of
the final pattern was expected to be represented by 18 points.

According to the previous work of Paniconi and Elder (1997), three distinct solutions in the late time limit might be
expected for the DKS equation, depending on the parameter ↵: periodic large hexagonal morphology for higher values, an
oscillatory or breathing hexagonal state for middle values, and a spatiotemporal chaotic state for lower values. However,
since the present endeavor considers realistic coefficients related to the physics of sputtering, the same range of ↵ values
employed by Paniconi and Elder (1997) wouldn’t produce the same effects.

The undamped solution is shown in Figure 2, when ↵ = 0. The initial condition presented a wavenumber q

o

=
1.7181 · 10�1 (14 wavelengths in the system). A disordered chaotic cellular structure is obtained for late time, with large
variations of cell size and shape, as displayed in Figure 2a for ⌧ = 11803. From the L1 curve (Figure 2b), we can see that
the chaotic pattern is reached within ⌧ = 500. While a steady state isn’t reached for the analyzed period, it’s clear that the
evolution dynamics are much slower during late time.
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(a) Surface height h̄n for ⌧ = 11803
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(b) L1 norm evolution

Figure 2: Numerical solution for a 2D anisotropic DKS equation - Spatiotemporal chaotic pattern, ↵ = 0

Figure 3 reveals the numerical solution for ↵ = 0.05. The initial condition was the same from the previous case
(q

o

= 1.7181 ·10�1) . A spatiotemporal chaotic cellular structure is obtained for late time, which can be seen in Figure 2a
for ⌧ = 11750. In comparison with the undamped structure, the late time pattern for ↵ = 0.05 is much more organized,
with a smaller variation of cells sizes and shape, and some of them approaching the �

c

width. The L1 norm evolution
(Figure 3b) shows that a strongly oscillatory state is reached by ⌧ = 2000, where L1 starts fluctuating around L1 = 0.02.
These intense dynamics differ from the undamped case: even though the structure is more organized, it keeps changing at
a constant rate for an undefined period of time.
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(a) Surface height h̄n for ⌧ = 11750

0 0.2 0.4 0.6 0.8 1 1.2
·104

10

�4

10

�3

10

�2

10

�1

⌧

L
1
n
o
r
m

1

(b) L1 norm evolution

Figure 3: Numerical solution for a 2D anisotropic DKS equation - Chaotic semi-organized oscillatory behavior, ↵ = 0.05

For higher values of ↵, e.g. ↵ = 0.15, a defect-free hexagonal structure can be obtained, as displayed by Figure 4. A
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smaller wavenumber q
o

= 2.4544 · 10�2 was employed for the initial condition, since our previous studies revealed that
an 1D structure with wavelength similar to �

c

would prevail for q
o

= 1.7181 · 10�1 even in late time. Figure 4b shows
that the L1 norm has a first continuous decline, which represents the stabilization of an 1D structure with ~q ⇠ ~q

c

. Even
though this pattern seems to be approaching a steady state, hexagonal modes emerge when ⌧ is approaching ⌧ = 2000,
leading to a fast growth of L1 and to the formation of a new structure. Posteriorly, L1 reaches a peak and the structure
initiates its final stabilization, quickly removing defects and falling until the stationary state, which is illustrated by Figure
4a for ⌧ = 14630.
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Figure 4: Numerical solution for a 2D anisotropic DKS equation - Stationary hexagonal structure, ↵ = 0.15

Comparing the structure evolution for ↵ = 0.15 and ↵ = 0.05, we confirm the coincident time for the emergence of
the hexagonal modes, close to ⌧ = 2000. For ↵ = 0.15, the damping effect is sufficient for an ordered and quick reorga-
nization of the structure after a L1 peak, while for ↵ = 0.05 the damping is not high enough to allow the microstructure
to reorganize itself into a perfectly ordered hexagonal state, and it keeps chaotically oscillating around the peak L1 value.
Another observation is made towards the obtained height values. All of them are negative, being consistent with the
erosive phenomenon. However, for ↵ = 0 the mean height of the surface falls continuously with time, while maintaining
the distance h̄

dif

between the minimum and maximum points around h̄

dif

= 6.4. For ↵ = 0.05 the mean height remains
approximately constant, around -0.5 and -3.5 (h̄

dif

⇠ 3.0), for an undefined time. Finally, for the steady state obtained
with a damping ↵ = 0.15, the maximum and minimum height values were, respectively, -0.03 and -0.81 (h̄

dif

= 0.78).

4. CONCLUSION

In the present paper we have developed a finite-difference time splitting scheme to solve an anisotropic Kuramoto-
Sivashinsky equation, which can describe a surface eroded by ion bombardment. Regarding its stability, the tests revealed
that for �⌧  2.0, the numerical scheme was sufficiently stable with a grid spacing �X = 1.0. Spatiotemporal chaotic
structures appeared for the undamped case, whose dynamics fell continuously for the long time. A chaotic oscillatory
pattern rose from the simulation with ↵ = 0.05, reaching a better ordered structure than the one for the undamped result,
while maintaining a highly constant kinematic after the emergence of the hexagonal modes. Defectless hexagonal periodic
structures were obtained for higher values of the damping coefficient, starting from a monomodal initial condition with
~q = q

o

~1
x

. These results were physically consistent with the sputtering phenomenon, reproducing ripple and hexagonal
pattern formation experimentally obtained by other authors. Future work will investigate a wider range of values for ↵.
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