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Chapter 1

Arbitrary Lagrangian-Eulerian Method

for Two-Phase Flows

G. Anjos∗, N. Mangiavacchi† and J. Pontes‡

Group of Environmental Studies for Water Reservoirs – GESAR
State University of Rio de Janeiro, R. Fonseca Teles 524, 20550-013

Rio de Janeiro, RJ, Brazil

Metallurgy and Materials Engineering Dept. PEMM/COPPE/UFRJ,

P.O. Box 68505, 21941-972, Rio de Janeiro, RJ, Brazil

A modern numerical method is described to study two-phase flows for single and
multiple bubbles. The fluid flow equations are developed in 3-dimensions based
on the Arbitrary Lagrangian-Eulerian formulation (ALE) and the Finite Element
Method (FEM), creating a new two-phase method with an improved model for
the liquid-gas interface. A successful adaptive mesh update procedure is also
described for effective management of the mesh at the two-phase interface to
remove, add and repair surface elements, since the computational mesh nodes
move according to the flow. The Lagrangian description explicitly defines the
two-phase interface position by a set of interconnected nodes which ensures a
sharp representation of the boundary, including the role of the surface tension.
The methodology proposed for computing the curvature leads to accurate results
with moderate programming effort and computational cost and it can also be
applied to different configurations with an explicit description of the interface.

1. Introduction

In the literature, fluid flow can be expressed by two reference frames commonly

used in fluid dynamics, namely Eulerian and Lagrangian descriptions. The former

describes the fluid motion relative to a fixed referential frame where the continuum

moves with respect to the mesh nodes. The latter describes the fluid flow through

the material derivative, i.e. the referential frame is moving according to the fluid

motion. A more generalized way to describe the fluid motion may consider the

referential frame not in fixed space or moving with the same velocity of the fluid

motion, but instead moving with an arbitrary velocity that does not necessary

represent any of the standard description. Such a generalized representation of the
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flow field is referred as the Arbitrary Lagrangian-Eulerian description or simply

ALE.

The conservation laws are used to set the general equations for fluid flow prob-

lems. However, the modeling of two-phase flows requires an additional description

to characterize the different phases involved. In the “one-fluid” approach, one set

of equations is used to describe the entire domain, therefore an additional marker

function is used to modify the properties of the phases. At the interface, a jump

condition must be taken into account so that the transition zone located at the

interface between the fluids can be modeled. In this way, the mass, momentum and

energy conservation laws will be developed by considering only one set of equations,

where the different phases are represented by a scalar function which defines dif-

ferent properties, such as viscosity and density. Note that in this formulation, the

fluid properties are considered to be constant in each phase with a jump condition

at the interface.

This chapter describes the general non-dimensional equations employed to model

two-phase flow. The equations are written in the so-called “one-fluid” formulation

using the Arbitrary Lagrangian-Eulerian description in which the computational

mesh and the interface between the fluids move with an arbitrary velocity. Due to

the constant motion of the mesh nodes and thus distortion of their layouts, continu-

ous geometric operations are required to keep the finite element mesh satisfactorily

distributed, which includes insertion and deletion of nodes, as well as contraction

and flipping of element edges. Due to the explicitly description of the interface be-

tween the fluids by interconnected nodes, the motion of the interface also requires

surface geometric operations, such as those found in the mesh nodes (see [?] for

detailed informations). Finally, this chapter will present the discretization of the

surface tension force and the detailed computation of the curvature term.

2. The arbitrary Lagrangian-Eulerian description

A schematic representation of the one-dimensional domain with the Lagrangian,

Eulerian and ALE descriptions is shown in Fig. ??. In Fig. ??(a), the nodes are

moved with the same velocity as the flow field, thus the material nodes are found to

be located on the mesh nodes. As can be seen, depending on the flow conditions, in

a short period of time the nodes may be poorly distributed, consequently degrading

the accuracy of the solution. In Fig. ??(b), the mesh nodes are fixed in the space

domain and the particle motion is evaluated according to both their position and

velocity and then interpolated back to the mesh nodes. The adverse condition here is

that the quantity in the next time step is interpolated, and thus numerical diffusion

may spoil the accuracy of the simulation. Figure ??(c) shows an example of the

ALE motion, where the material nodes are calculated based on the arbitrary motion

of the mesh nodes. Such a inherent capability of the ALE description allows the

mesh nodes to be repositioned according to some refinement criteria, thus avoiding
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the shortcomings of the pure Eulerian and Lagrangian descriptions.

(a)

(b)

(c)

Fig. 1. One-dimensional examples of the (a) Lagrangian description, in which the mesh nodes
move according to the flow field, (b) Eulerian, in which the mesh is fixed in the space and (c)

ALE, in which a generalized description is achieved [?].

According to [?], the ALE description can be represented by three different

domains as illustrated in Fig. ??. These domains are divided as follows: material

domain (X), spatial domain (x) and referential domain (X̃). Both the material and

referential domains are moving while the spatial domain is fixed. The velocity of a

particle that travels in the material domain relative to the spatial domain may be

written according to the operator φ, which describes the motion as:

v =
∂x

∂t
=

∂

∂t
X(x, t) (1)

On the other hand, the velocity of a particle that travels in the referential domain

relative to the spatial domain according to the operator φ̃ may be written as:

v̂ =
∂x

∂t
=

∂

∂t
X̃(x, t) (2)



July 13, 2016 11:29 World Scientific Review Volume - 9.75in x 6.5in main

6 G. Anjos, N. Mangiavacchi and J. Pontes

Fig. 2. Material, referential and spatial configuration for the Arbitrary Lagrangian-Eulerian
framework.

Consequently, the two velocities v and v̂ are mapped onto the spatial domain

and thus can be rewritten to described the Arbitrary Lagrangian-Eulerian motion

as a subtraction of these velocities. So now, let us consider f to be a quantity in

the space-time domain expressed as a function of these two mentioned descriptions.

The resulting scheme for the quantity f is given by:

Df

Dt
=
∂f

∂t
+ ((v − v̂) · ∇)f =

∂f

∂t
+ (c · ∇)f (3)

In this scheme, if the mesh velocity is v̂ = v, the time variation of the quantity f

is exactly the same in two different time steps, and thus the Lagrangian description

is recovered. By setting the mesh velocity v̂ = 0 instead, the referential domain

is fixed in the space, while the quantity f varies, and thus in this case the pure

Eulerian description is achieved.

3. Finite element method for two-phase flows

In this section, the Finite Element Method formulation will be described. Focus will

be on the variational formulation (weak form) of the non-dimensional conservation

equations for two-phase flows. Additionally, the discrete finite elements used in

this work will be presented and a brief discussion given of the tetrahedron mesh

generation method through the Delaunay algorithm.
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3.1. Variational formulation

Let us consider the fluid to be incompressible and the momentum, continuity and

energy (heat) equations are given in their non-dimensional form as follows:

∂v

∂t
+ c · ∇v = −1

ρ
∇p+

1

Re
∇ · [µ(∇v +∇vT )] +

1

Fr2
g +

1

We
f (4)

∇ · v = 0 (5)

∂T

∂t
+ c · ∇T =

1

RePr
∇ · (k∇T ) (6)

that are valid in a domain Ω ⊂ Rm with the following boundary conditions:

v = vΓ in Γ1 (7)

vt = 0 and σnn = 0 in Γ2 (8)

T = TΓ inΓ3 (9)

where the convective velocity c represents the relative velocity between the flow

field and the mesh, given by the following expression: c = v − v̂. Here, v stands

for the flow field velocity and v̂ for the mesh velocity.

Now, let us consider the subspace:

V = H1(Ω)m = {v = (v1, . . . , vm) : vi ∈ H1(Ω),∀ i = 1, . . . ,m} (10)

where H1(Ω) and the Sobolev space given by:

H1(Ω) =

{
v ∈ L2(Ω) :

∂v

∂xi
∈ L2(Ω), i = 1, · · · ,m

}
(11)

taking L2(Ω) as an infinite dimensional space characterized by the Lesbegue’s in-

tegral, which is equivalent to the Riemann’s integral for continuous functions, and

thus it can be treated by the conventional form:

L2(Ω) =

{
v : Ω→ R,

∫
Ω

v2dΩ <∞
}

(12)

Note that V = H1(Ω)m is the Cartesian product of m spaces H1(Ω) where:

VvΓ = {v ∈ V : v = vΓ in Γ1} (13)
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PpΓ = {q ∈ L2(Ω) : q = pΓ in Γ2} (14)

TTΓ = {r ∈ L2(Ω) : r = TΓ in Γ3} (15)

The variational formulation consists in finding the solutions v(x, t) ∈ VvΓ
,

p(x, t) ∈ P0 and T (x, t) ∈ TTΓ
so that:

∫
Ω

{
∂v

∂t
+ c · ∇v +

1

ρ
∇p− 1

Re
∇ · [µ(∇v +∇vT )]− 1

Fr2
g− 1

We
f

}
·wdΩ = 0 (16)

∫
Ω

[∇ · v]qdΩ = 0 (17)

∫
Ω

{
∂T

∂t
+ c · ∇T − 1

RePr
∇ · (k∇T )

}
rdΩ = 0 (18)

Developing the equation terms, they become:

∫
Ω

{
∂v

∂t
+ c · ∇v

}
·wdΩ +

∫
Ω

{
1

ρ
∇p
}
·wdΩ

−
∫

Ω

{
1

Re
∇ · [µ(∇v +∇vT )]

}
·wdΩ

−
∫

Ω

{
1

Fr2
g

}
·wdΩ−

∫
Ω

{
1

We
f

}
·wdΩ = 0 (19)

∫
Ω

{∇ · v}qdΩ = 0 (20)

∫
Ω

{
∂T

∂t
+ c · ∇T

}
· rdΩ−

∫
Ω

{
1

RePr
∇ · (k∇T )

}
rdΩ = 0 (21)

The first terms of Eqs. ?? and ?? will be treated in the ALE formulation as a

substantive derivative. Its weighing ratio consists in:

∫
Ω

Dv

Dt
·wdΩ =

∫
Ω

{
∂v

∂t
+ c · ∇v

}
·wdΩ (22)

∫
Ω

DT

Dt
rdΩ =

∫
Ω

{
∂T

∂t
+ c · ∇T

}
· rdΩ (23)
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The next step is the treatment of the diffusive terms, in which Green’s theorem

should by applied, thus splitting the volume integral in two other integrals: the

inner and the boundary domain integrals, so that:

∫
Ω

∇ · [µ(∇v +∇vT )] ·wdΩ =

−
∫

Ω

ν[(∇v +∇vT ) : ∇wT ]dΩ +

∫
Γ

n · [µ(∇v +∇vT ) ·w]dΓ (24)

∫
Ω

∇ · (k∇T )rdΩ = −
∫

Ω

(k∇T ) · ∇rT dΩ +

∫
Γ

n · (k∇T )rdΓ (25)

where the operator (:) stands for the scalar product between two tensors. The

boundary integral Γ in the above equation may be segregated into two other integrals

in Γ1 and Γ2. Due to w = 0 from Eq. ?? and r = 0 from Eq. ??, the integral in Γ2

is null. Moreover, the integral in Γ1 is also null due to the boundary conditions in

Eq. ??. Therefore the integral in Γ is null. The treatment of the pressure term is

done by applying the same procedure, and thus the integration by parts results in:

∫
Ω

∇p ·wdΩ = −
∫

Ω

p∇ ·wdΩ +

∫
Γ

pw · ndΓ (26)

where the above boundary integral is null due to the boundary conditions w = 0 in

Γ1 and p = 0 in Γ2. The gravity and surface tension terms are treated simply as:

∫
Ω

g ·wdΩ and

∫
Ω

f ·wdΩ (27)

The resulting equations are:

∫
Ω

Dv

∂t
·wdΩ− 1

ρ

∫
Ω

p∇ ·wdΩ +
1

Re

∫
Ω

µ[∇v +∇vT ] : wdΩ

− 1

Fr2

∫
Ω

g ·wdΩ− 1

We

∫
Ω

f ·wdΩ = 0 (28)

∫
Ω

[∇ · v]qdΩ = 0 (29)

∫
Ω

DT

∂t
rdΩ +

1

RePr

∫
Ω

(k∇T )∇rT dΩ = 0 (30)
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The integral forms are defined as follows:

m(
Dv

Dt
,w) =

∫
Ω

Dv

Dt
·wdΩ (31)

k(ν,v,w) =

∫
Ω

ν[(∇v +∇vT ) : ∇wT ]dΩ (32)

g(p,w) =

∫
Ω

∇p ·w dΩ (33)

d(p,w) =

∫
Ω

(∇ ·w)p dΩ (34)

k̃(k, T, r) =

∫
Ω

k∇T · ∇rT dΩ (35)

m̃(
DT

Dt
, r) =

∫
Ω

DT

Dt
rdΩ (36)

Thus, the weak form of the proposed problem is written as: Find the solutions

v(x, t) ∈ VvΓ , p(x, t) ∈ P and T (x, t) ∈ TTΓ such that

m(
Dv

Dt
, ρ,w)− g(p,w) +

1

Re
k(µ,v,w)− 1

Fr2
m(g, ρ, w)− 1

We
m(f , w) = 0(37)

d(q,v) = 0(38)

m̃(
DT

Dt
, r) +

1

RePr
k̃(k, T, r) = 0(39)

for all w ∈ V0, q ∈ P0 and T ∈ T0.

3.2. Mesh elements

The computational mesh used in the Finite Element Method allows for a wide va-

riety of elements. They are characterized by their geometry and the polynomial

interpolating function used to fit the desired equation. These elements may be clas-

sified according to their shape as triangular, quadrilateral, etc. for 2-dimensional

problems and tetrahedral, prismatic, parallelepiped, etc. for 3-dimensional prob-

lems. Moreover, the order of the polynomial function may be classified as linear,

quadratic, cubic, bi-linear, etc. Additionally a particular class of elements, namely

Isoparametric elements, may be used where the region to be modeled requires ele-

ments with more general shapes, which is the case of curvilinear domains (for details,

see [?]). Even though affordable in moving boundary problems, the Isoparametric

elements are unfortunately relatively more complicated to deploy and thus they

have not been chosen in the present work.

The finite elements are numerically represented by the meaning of their local

coordinates. This means that the interpolating functions (also known as shape

functions) are built independently of the element’s neighborhood, and thus the fi-

nite element may be easily changed without modifying significantly the simulation
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program. Such an inherent ability is a strong advantage compared to other dis-

cretization methods such as finite difference and finite volume methods. In the

following subsections, a description of the tetrahedron element with respect to its

volume coordinates is given and then a brief illustration of different shape functions

commonly found in the literature are presented.

3.2.1. 3-dimensional elements

The choice of the appropriate element is a key step to successfully achieve the

required precision in the simulations. In fluid dynamics, the element is responsible

for the coupling of velocity and pressure and it should satisfy the requirements of

the so-called Ladyzhenskaya-Babouska-Brezzi (LBB) stability condition ([?], [?] and

[?]). Such a condition imposes the type of velocity and pressure basis functions.

One way to avoid the LBB condition is to use stabilizing methods such as pressure

stabilization, penalty method or artificial compressibility ([?], [?],[?]). However,

such a stabilization process is not part of this work, for which is preferred the

use of LBB stable elements. The elements used in the present work are presented

below, followed by short descriptions of their features and their applicability in the

conservation equations.

Linear element: The unknowns are evaluated at the tetrahedron’s corners

with interpolation functions of order 1. This element is commonly used to solve

scalar equations, such as heat and chemical species transport. This element does

not satisfy the LBB condition for fluid flow problems and it cannot be used to solve

velocity and pressure without stabilizing methods.

For linear tetrahedron elements with local coordinates Li, Lj , Lk and Ll, the

shape functions are equivalent and written as:

Ni = Li, i = 1, 2, 3, 4 (40)

Mini element: This element is part of the Taylor-Hood family and it is a

combination of the linear tetrahedron and an additional “bubble” function, built
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by an additional node localized in its barycenter, thus making it a five node element.

The interpolation polynomial is of order 4, but it does not present the second and

the third degree terms. The pressure is linear and is evaluated at the tetrahedron

vertices and the velocity is cubic incomplete and evaluated at all the 5 nodes.

The shape functions Ni for the 5-node tetrahedron element may be defined as a

function of local coordinates Li, Lj , Lk as follows:

Ni = Li − 64L1L2L3L4, i = 1, 2, 3, 4

N5 = 256L1L2L3L4

(41)

10-node element: Defined by nodes in the middle of the tetrahedron edges,

the 10-nodes quadratic element is commonly used in fluid flow problems. The

interpolation polynomial is of order 2. The pressure is linear and evaluated at the

tetrahedron vertices, while the velocity is quadratic and evaluated at all 10 nodes.

The interpolation functions Ni for the 10-node quadratic element may be also

expressed as a function of local coordinates Li, Lj , Lk as follows:
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Ni = (2Li − 1)Li, i = 1, 2, 3, 4

N5 = 4L1L2

N6 = 4L2L3

N7 = 4L1L3

N8 = 4L1L4

N9 = 4L2L4

N10 = 4L3L4

(42)

The above list of available elements is not limited to those above described.

Many other geometries and polynomial functions may be used to discretize the fluid

flow equations. High order elements, discontinuous pressure elements and combined

elements are examples of the wide variety of Finite Elements. This diversity is orga-

nized by families such as Taylor-Hood, Crouzeix-Raviart and Serendipity; each one

has its particular approach to calculate the quantities. A list of available elements

for fluid flow problems can be found in [?], [?] and [?].

Due to its superior mass conservation and the minimum amount of nodes per

element to satisfy the LBB condition, the mini-element has been chosen here to

discretize pressure and velocity in the conservation equations within the moving

mesh context. Such a decision has shown to be appropriate to model two-phase

flow problems with minimum implementation efforts and significant accuracy.

3.3. The Delaunay tetrahedralization

Tetrahedron elements are extremely powerful to discretize any kind of geometry,

extending from simple brick geometries to more complex shapes including curvilin-

ear boundaries. However, for fluid flow problems, the distribution of the elements

should respect some physical requirements. While considering a domain discretized

by tetrahedron elements and not limiting it to a uniform node distribution, an un-

structured grid is expected, i.e. the number of a node’s neighbors is not constant.

Such a flexibility cannot be assessed if cubic and brick shaped elements are used;

however, the Finite Element method allows the concurrent use of different element

shapes, if the code implementation takes into account their interconnectivity. Thus,

the tetrahedron distribution in the computational domain may change with respect

to the investigated problem and some criteria need be imposed to keep the ele-

ments bounded to acceptable aspect ratios, since low quality elements may corrupt

the accuracy of the computational discretization.

In the present technique, the equations are discretized over an unstructured

non-regular tetrahedral mesh with optimal element properties. This is achieved us-

ing the Delaunay tetrahedralization algorithm which ensures well-shaped elements.
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However, due to the constant motion of the mesh nodes, all the Delaunay require-

ments may not be satisfied. Nevertheless, as will be described bellow, efforts have

been made to maintain the mesh quality, in each time step, restricting it to good

element aspect ratios.

The Delaunay tetrahedralization is a geometrical construction often used in

mesh generation for the Finite Element Method. Such a construction corresponds

to the dual graph of the Voronoi diagram ([?]), which is a special type of space

decomposition determined by distances and commonly used for mapping regions and

land areas. Figure ?? shows a simplified representation of the Voronoi diagram of a

set of nodes and its corresponding tessellation according to the Delaunay properties.

(a)

(b)

Fig. 3. 2-dimensional representation of a (a) Voronoi diagram and (b) its tessellation according
to the Delaunay properties.

In 2-dimensional spaces, the Delaunay algorithm maximizes the minimum angle

of all triangles and minimizes the largest circumscribed circle, thus avoiding low
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quality elements. The Delaunay tetrahedralization follows the same strategy as its

correspondent 2-dimensional algorithm, however some of the features may not be

assured due to geometrical restrictions. Although this inconvenience, the Delaunay

tetrahedralization results in satisfactory elements and thus can be used to discretize

the domain of two-phase flow problems by the Finite Element Method (see [?] and

[?]).

4. Adaptive mesh refinement

This section describes the new methodology of adaptive mesh refinement developed

to work with the Finite Element method in two-phase flows, in which the interface

between the fluids plays an important role. The effective management of the com-

putational mesh is detailed in which two data structures are stored in the computer

memory and handled separately.

4.1. Mesh representation

Two sets of data are stored during the simulation which are treated separately

in the framework of the adaptive mesh refinement: the volumetric nodes and the

surface mesh. The latter consists of two parts, those on the interface between the

phases and those on the domain boundary, both created simultaneously by the

software (GMesh, [?]). The code is then linked to a tetrahedral mesh generator

(TETGEN, [?]) that uses the previous generated surface meshes and a volumetric

set of nodes as input parameters. The initial volumetric node distribution may

be set manually, according to the requirements of the simulation, or by TETGEN,

which creates a smooth distribution of nodes according to the edge lengths of the

given surface meshes. Then, the 3-dimensional connectivity array is exported to the

code. Figure ?? depicts the two data structures used in this work. Such an approach

allows for easy maintenance of each region without affecting the node connectivity

of the other. Moreover, the data structure makes the mesh management easier in

the code programming level, enabling fast access to each structure separately.

In the ALE context the computational mesh is not fixed in the space, but instead

it is moved according to an arbitrary velocity. Therefore to avoid collapsing of

nodes, edges and elements, the computational mesh requires an extensive topological

treatment. Note that due to the separate treatment of the surface mesh and the

volumetric nodes, each set of data must be handled in a different way. Additionally,

mesh smoothing may be used to reduce the number of operations performed on the

meshes.

4.2. Volumetric nodes

For each time step, the node distribution of the volumetric mesh (tetrahedrons) is

monitored and compared to the previous iteration. The tetrahedron edge length
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(a) (b)

Fig. 4. Data-set representation of the meshes used in the present numerical code. (a) The surface
meshes, which comprise the interface between the fluids and the domain boundary, are passed

as an input parameter to the open source library TETGEN, which exports the 3-dimensional

connectivity array. (b) The volumetric mesh is then used to discretize the two-phase flow equations.

determines whether insertion or deletion is required for a given predefined distance

in a specific zone, therewith it is possible to avoid clustering and dispersion of

computational nodes. In this work, the edge length distribution h is obtained by

the solution of the Helmholtz’s equation:

∇2h =
1

k
(hb − h) (43)

where k is a diffusive parameter and hb is the initial edge length distribution. Thus,

the solution obtained corresponds to a smooth distribution of nodes in the volumet-

ric space. Note that for large values of k in the above equation, the right hand term

tends to zero, thus resulting in Laplace’s equation (∇2h = 0) in which the solution

damps all the sudden changes in the distance between nodes. On the other hand,

assuming a small value of k, the solution h approaches the initial node distribution

hb.

As mentioned before, the initial volumetric node distribution hb may be set

according to the flow requirements, where a particular zone may or may not be

refined. Figure ?? shows two examples of the solution of the Helmholtz equation.

In both cases, the solid lines represent the initial edge length distribution hb, while

the other lines show the solutions for different diffusive parameter k. As can be

seen for large values of k, the smoothing effect is more pronounced, while for small

values of k, the solution approaches the initial distribution hb. In Fig. ??(a), the

edge length distribution is seen in the z axis, in which the bubble is located within
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the interval z = {2, 4}. This shows a typical distribution of edge lengths in rising

bubble simulations where a dense cluster of nodes is expected near the bubble’s

interface. However, far from the interface, the region is not as refined as can be

seen with large values of edge length h. In Fig. ??(b) the edge length distribution

differs from the previous case. The aim is to achieve an efficient distribution along

a pipe or channel, thus more nodes are required close to the domain boundaries

and a coarse mesh is sufficient in the middle. Such a refinement is important

to investigate liquid film thickness and bubble/boundary interactions present in

annular and bubbly flows.

(a) (b)

Fig. 5. Solutions of the Helmholtz’s equations for different values of the diffusive parameter k.

(a) The sample was taken along the z axis, in which the bubble’s location can be seen within the
interval z = {2, 4}. (b) The y component represents the channel cross section. In this case, the

mesh is more refined close to the channel’s boundaries (y = −0.5 and y = 0.5) and coarser in the

middle.

The solution of the Helmholtz equation (??) has been shown to be extremely

important in order to achieve a smooth distribution of nodes in the 2-dimensional

and 3-dimensional domains. Its continuous solution may overload the computational

resources and it may not necessarily bring significant changes in the simulation at

each time step. Due to minor modifications in the mesh distribution from one time

step to another, mainly driven by small time steps, the solution of the Helmholtz

equation may be stored in the memory and kept for a few iterations. After a certain

number of iterations, say 5, the procedure is redone. Thus, the successive solution of

the Helmholtz equation is avoided but a smooth edge length distribution is achieved

during all the simulation.

4.3. Mesh smoothing

A proper choice of the mesh velocity and the mesh strategy is necessary to avoid

the fast degradation of the computational elements and the onset of non-desirable

numerical instabilities found in the pure Lagrangian framework. Especially close
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to the boundaries, the elements are often stretched and compressed in such a way

that the simulation becomes unstable. Therefore it is desirable to chose the mesh

velocity to rearrange the nodes, thus keeping the elements bounded within good

aspect ratios. Additionally, insertion and deletion of vertices should be performed

whenever the edges of the elements are greater or smaller than a predefined size.

Unfortunately, the re-meshing process and the rearrangement of mesh elements may

become very expensive in terms of processing time and therefore they require special

attention. To address this issue, a new fast node repositioning scheme is proposed

and described here as well as a new local re-meshing technique that bounds the

element aspect ratios within a satisfactory level with no significant time cost in

two-phase flows.

The mesh velocity v̂ determines the motion of the nodes of the finite element

mesh. This velocity is obtained by a linear combination of two others: the flow

velocity itself and an elastic velocity, in which the latter is defined according to some

smoothing criteria intended to redistribute the nodes optimally, thus minimizing the

number of re-meshing steps and avoiding heavy computation requirements. The

transfinite mapping (see [?]) and Laplacian smoothing methods are examples of

mesh-update procedures.

The idea behind the Laplacian smoothing operator is to move the non-uniform

mesh nodes by redistributing the distance equally between them, thus achieving

a smoothed distribution. In this work, the implementation consists in defining

a function in terms of the 1-ring neighboring coordinates; thus the mesh nodes

are repositioned in such a manner that the elements satisfy some predetermined

geometrical criterion. The smoothing procedure is part of an iterative scheme which

converges to a more uniform node distribution. According to [?], the new node’s

position x̂i can be approximated using a weighted sum of the 1-ring neighbors of a

node as follows:

x̂i =
∑

i∈N1(j)

wij(xj − xi) (44)

where wij is the weight that can be set as uniform or proportional to the inverse

distance from its neighbor vertices and N1 is the set of 1-ring neighbors of the

jth. node. Thus, the mesh velocity v̂e is found by dividing the displacement of

each node’s position xi by the simulation time step dt. This approximation is not

sufficient to distribute the mesh nodes optimally in one single application step but

once applied systematically, the mesh elements converge to a satisfactory shape.

Figure ?? shows a 3-dimensional example of a node reposition scheme based on the

Laplacian smooth operator. As can be seen, the Laplacian operator moves the nodes

in the direction of the polyhedron’s centroid, thus the connected edges approach an

uniform spatial distribution.

So far we have seen that the uniform weighted approximation results in signif-

icant sliding and shape distortion in an unstructured 3-dimensional mesh, as has



July 13, 2016 11:29 World Scientific Review Volume - 9.75in x 6.5in main

Arbitrary Lagrangian-Eulerian Method for Two-Phase Flows 19

(a) (b)

Fig. 6. Laplacian smoothing operation in 3-dimensional space. (a) initial node position and (b)

final node position after successively smoothing steps.

been reported by Taubin [?]. Therefore, a scale-dependent Laplacian approximation

seems to be ideal for all the 3-dimensional simulations. Its difference, compared to

the uniform weighted method, is that wij = 1/|eij | where eij is the distance be-

tween the node and each neighbor. Thus, the node sliding is less pronounced and

the shape of the elements converges to a more equidistant distribution of vertices.

Thus, the final Laplacian smoothed distribution is obtained by:

v̂ei =

∑
i∈N1(j)

e−1
ij (xj − xi)

dt
(45)

Additionally, another technique has been tested here which defines the velocity

v̂ as a function of the neighbor’s velocities instead. If an iteration process is used,

the velocity is spread smoothly over the vicinity of the surface mesh. The advantage

of such an approach is that for high velocity gradients, when the elements tend to

collapse, the surface mesh velocity is distributed around the neighborhood of each

node next to the surface, thus moving them all in the direction of the surface node

normal vector. The procedure is represented by the following scheme:

v̂vi =
1

n

∑
j∈N1(j)

vj (46)

where N1 is the set of the 1-ring neighbors to the jth node, vi is the velocity

associated to the ith node and n is the number of mesh neighbors to the ith node.

The mesh velocity is represented by v̂vi , which is the mesh velocity. Note that

with such an approach, the nodes close to the surface mesh (interface and domain

boundaries) will behave like those of the surface mesh. Thus, it is expected that

these nodes will not collapse nor cross a triangle interface. This scheme has been

successfully applied to overcome the fast element distortion close to the interface

where the velocity gradient may be high.
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Figure ?? illustrates the above velocity repositioning scheme in 2-dimensional

space and its simplicity. The surface’s velocity is scattered gradually to the nodes

near the surface, the closer is the node to the surface, the stronger is the influence of

the moving interface. This scheme is an important tool to avoid collapsing nodes and

surface elements. Note that its extension to a 3-dimensional space is straightforward

by considering an embedded surface in R3 as the interface between the fluids.

Fig. 7. Velocity smoothing operation in 2-dimensional spaces. Near the interface, the nodes are

more influenced by the surface velocity (large arrows), while if the node is located far from the

surface, the mesh velocity ûv is less pronounced (small arrows). Its analogy to 3-dimension space
is straightforward by considering a surface embedded in R3 as the interface between the fluids.

Moreover, the velocity smoothing scheme proposed here is useful for simulations

involving bubble/bubble and bubble/wall interactions. Close to the boundaries, the

volumetric nodes are moved according to the interface’s velocity, which is responsible

for pulling the nodes away, and the zero boundary mesh velocity, which stops the

motion of an approaching node. Thus, the volumetric nodes are compressed and

squeezed in the gap between the interface and boundary meshes, such that the

precision and the number of nodes remain unchanged.

Due to the separation of the domain and the surface mesh in the above proce-

dure, the mesh distribution treatments may be combined into a scheme and adjusted

by parameters varying from 0 to 1, which is a 3-dimensional generalization of the

approach presented by Souza and Mangiavacchi [?] for 2-dimensional simulations.

The domain and surface velocities are therefore treated as follows:

v̂(x) =

{
v − γ1(v · t)t+ γ2(ve · t)t if x belongs to the interface

β1v + β2vv + β3ve if x does not belong to the interface
(47)

In such a method, due to the description of the interface mesh by computa-

tional elements, the surface should move according to the fluid motion. In the

above equation, if x belongs to the interface, we can define its velocity as vI . Thus,

it is convenient to decompose it into two orthogonal components: vIn and vIt which
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represent the normal and tangential velocities, respectively. To decrease the dis-

placement of nodes in the tangential direction, one may remove partially, or even

totally, its velocity from the total interface’s velocity. This can be achieved by ei-

ther projecting the interface’s velocity vIn to the normal vector associated to the

node or, in a simpler manner, by removing the tangent component from the total

surface mesh velocity vIt = v − (v · t)t. Figure ?? shows such a decomposition

of the interface’s velocity vI into two orthogonal vectors. Such a procedure may

be included into a scheme so that the intensity of the tangential velocity can be

easy modified. Therewith, the parameter γ1 controls the magnitude of the tangent

velocity in the total interface’s velocity. Letting γ1 = 1, only the normal interface’s

velocity is taken into account in the surface mesh motion, and therefore the surface

nodes are not allowed to move in the tangential direction. Additionally, the param-

eter γ2 includes the smoothing scheme in Eq. ?? on the surface mesh nodes, thus

keeping them all bounded within a good aspect ratio. The parameter β1 controls

the Lagrangian motion of the inner and outer volumetric mesh velocity. By setting

β1 = 1, the flow velocity v is fully included in the moving mesh velocity v̂ and, con-

sequently, the volumetric nodes move according to the flow field. Otherwise, letting

β1 = 0, the flow velocity v is not taken into account on the moving mesh velocity.

The parameters β2 and β3 control the intensity of the velocity smoothing scheme

vv and the Laplacian smoothing scheme ve into the moving mesh velocity. Thus,

setting both parameters to null, the volumetric mesh smoothing is not performed.

Note that the parameters γ and β may vary from 0 to 1 to achieve a desirable node

distributions according to the simulation requirements.

Fig. 8. Normal and tangent components of the interface’s velocity vector. The proposed scheme
allows to remove partially or totally the tangent component of the interface’s velocity vI by varying
the parameter γ1.

To illustrate the influence and flexibility of this technique, several cases for

choosing these mesh parameters are discussed below.

The most immediate case which requires very strict mesh control is the sim-
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ulation of a bubble in a gravity-driven flow. In such a demanding condition, the

computed flow field tends to drag the surface nodes from one region to another

mainly due to the higher shear stress close to the interface. The flexibility of the

parameters presented in Eq. ?? allows one to chose γ1 = 1, so that the tangen-

tial surface velocity is completely eliminated from the equation and therefore the

surface nodes are allowed to move only in the normal direction. Additionally, the

wake and vortex formed by the bubble’s ascension push the surface nodes around

the bubble’s surface, compressing them one against the other; thus a stiff mesh is

recommended to avoid such a problem and this is achieved by setting β1 = 0. One

may also adjust the parameters β2 and γ2 between 0 and 1 to displace the nodes

close to the interface and to optimally redistribute the new surface mesh elements

respectively, as well as the value of β3 to guarantee better tetrahedron aspect ratios.

In contrast to the above example, if the bubble or drop is nearly static or its

displacement with respect to the domain is negligible, different mesh parameters

are required. Due to the low level of motion of the flow field, the mesh velocity may

be set to a pure Lagrangian motion (β1 = 1), thus describing the fluid convection

with higher precision and a lower number of mesh nodes compared to a standard

fixed mesh simulation. The other parameters may be adjusted according to the

need to preserve the mesh quality. Moreover, if the flow is controlled by an inflow

velocity condition, letting β1 = 1 and γ1 = 0 may be the appropriate choice for

such a problem.

A third case is illustrated for shear-driven simulations. Due to the prescription

of a velocity inflow condition, a pure Lagrangian motion is not recommended due

to the strong mesh distortions that may appear, especially close to the boundaries.

Thus, it is recommended to set the mesh parameter β1 = 0. This implies a stiff

volumetric mesh. The elastic velocity parameters β3 and γ2 may be adjusted to 1,

thus maintaining the nodes well distributed for both the volumetric and the surface

meshes. The parameters β2 and γ1 may be arbitrarily chosen to fit the requirements

of the mesh. In general, when several of these conditions are present, then one must

do a pre-study to find a good choice of parameters that handle the various facets

of the problem being faced.

4.4. Surface remeshing

Unfortunately, mesh smoothing by itself is not able to keep all the elements bounded

to optimal shapes after numerous iterations. Furthermore, the moving front creates

a poor distribution of surface nodes which can affect the accuracy of the computed

curvature and, consequently, the final solution. Since the connectivity of the sur-

face mesh is handled by the code, a re-meshing technique is thus required to keep

the surface element’s aspect ratios in a satisfactory range as indicated by ([?], [?],

[?], [?], [?]). The technique proposed here consists of changing the connectivity of

the surface nodes and neighboring elements through “flipping” operations. Addi-

tionally, insertion and deletion of nodes is required when a coarse surface mesh is
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detected (edge length h is too long) or when a dense cluster of surface nodes is

not desired, respectively. The new methodology proposed for insertion, deletion,

contraction and flipping of triangular edges on the surface mesh is described below.

4.4.1. Node insertion

The strategy for insertion of new nodes aims to occupy “barren” areas and to

increase the accuracy in certain regions of the surface mesh where a higher precision

is required. Different techniques and insertion criteria can be found in the literature,

especially in the computer graphics area, and thus it is desired to select a suitable

approach. In two-phase flows, the flow field formed by the motion of a single

bubble tends to move the surface nodes from one region of the interface to another,

producing non-uniform node distributions. Furthermore, when the bubble interface

moves away from another surface, the 3-dimensional elements are slightly stretched

and consequently their aspect ratios change and thus the insertion of nodes may be

required to maintain the desired mesh quality.

Figure ?? shows two connected triangles with vertices numbered from 1 to 4.

When, due to stretching, edge 1−2 becomes longer than a predefined length, a new

node v is inserted in the middle of the edge 1 − 2, thus dividing the segment into

two equal parts, and consequently creating two new elements which are both part

of the surface mesh.

(a) (b)

Fig. 9. Insertion of a surface node. (a) The edge 1 − 2, which is longer than a fixed parameter

hmax, is identified. (b) The new node is then added at the mid node of the edge 1− 2.

Secondly, if the new node v is inserted on the segment that defines the edge 1−2

(see Fig. ??(a)), it will introduce a local curvature error that is proportional to l/h,

where h represents the triangle edge length and l the distance from the edge 1− 2

and its correct position considering the local mean curvature, thus adding a pertur-

bation that affects the accuracy of the computation of the surface tension force. To

minimize such an undesirable error, the new node must be placed according to the

curvature of its neighbors. This can be achieved by fitting a circular segment which

passes through the vertices 1 and 2. As exemplified in Fig. ??(b), the θ-plane may

be defined by the mean normal vector of two adjacent triangular elements, namely
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1 − 2 − 3 and 1 − 4 − 2. The normal vector associated to the nodes 1 and 2 are

projected onto the θ-plane forming n1 and n2 respectively. The intersection of the

line of action of these two vectors is chosen as the approximate center (xc,yc) of

a circumference (x − xc)2 + (y − yc)2 = r2 with radius r. Thus, the solution of

this equation is used to determine the displacement l, and consequently the final

position of the new node v, as can be seen in Fig. ??(c).

(a) (b) (c)

Fig. 10. Representation of the 3-dimensional triangular surface mesh. (a) The node v is added

at the mid node of the edge 1− 2; (b) The plane θ is derived by the mean of two element normal
vectors which are adjacent to the edge 1 − 2. The vectors n1 and n2 are the projection of the

normal vectors of nodes 1 and 2 onto the plane θ; (c) The node’s new position is found by moving
it from the edge 1− 2 toward the circle segment in (b), thus the curvature error in v is reduced.

4.4.2. Node deletion

The displacement of vertices in the moving mesh technique may cause a dense

clustering of nodes in particular areas of the domain, including the triangular surface

mesh. Consequently, with the regrouping of these nodes, the elements become

smaller and the time step size decreases due to the Lagrangian motion restriction.

Additionally, the total number of nodes belonging to the mesh increases, increasing

the processing time. The additional number of vertices does not necessarily bring

real benefits to the accuracy of the final solution and thus these unnecessary vertices

should be eliminated. There are many ways to delete a single mesh node and

conserve the mesh quality for the next iteration. The present work has adopted two

different techniques to keep the mesh bounded to the Delaunay properties. Both

approaches attempt to find an edge h that is smaller than a predefined length hmin.

Once such an edge is detected, the method computes the sum of the edge length of

the 1-ring neighbors of both extremity vertices. The one which has the lowest value

is then considered for elimination from the surface mesh. Once the node deletion

is performed, its neighbors form a polyhedron which must be subdivided to recover

the triangular structure. Figure ?? shows the deletion of a surface node and the

polyhedron that then has to be remeshed.

Two strategies were tested to reconnect the empty space left by the deletion of

the surface node v. The first strategy is simple and its implementation is straight-

forward. Let us consider the polyhedron P = {1, 2, 3, 4, 5, 6} as show in Fig. ??.

The node 1 is chosen to reconnect successively the nodes 3, 4 and 5 by creating
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(a) (b)

Fig. 11. Deletion of a surface node. (a) The edge 3 − v is detected when its length is smaller

than a reference length hmin. Due to the sum of neighbor edge lengths, the node v is chosen to

be deleted. (b) Therefore, the empty polyhedron must be reconnected to achieve a new surface
triangulation.

edges on the surface mesh. If the polyhedron nodes have some orientation defined,

each triangle may be created by choosing two successive nodes. Thus, the first tri-

angle is formed by connecting the nodes {1, 2, 3} and the second by {1, 3, 4}. The

strategy continues to set the third triangle {1, 3, 5} and the last one is then defined

by {1, 5, 6}.

(a) (b) (c)

Fig. 12. Remeshing of a surface polyhedron by successive node re-connections. (a) An edge is
created by connecting the nodes 1 and 2. (b and c) The node 1 is then connected to the remaining
nodes 4 and 5, thus achieving the final surface triangulation.

The second strategy is done based on the work of Devillers [?] and Xu et

al. [?] and extended here to triangular surface meshes. Let us consider a generic

polyhedron P = {x0, x1, ..., xk, x0}, where the first “ear” of the polyhedron P is

defined by the triangle with vertices xi − xi+1 − xi+2. Such an ear will be part of

the surface triangulation if and only if the segment [xi, xi+2] is located inside the

polyhedron and it does not intercept its boundary. A sub-set of P is formed with

the deletion of the node xi+1, and then the new triangular “ear” may be found by

repeating the described strategy. The process is iterated until the number of nodes
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of the sub-set of P is equal to 3, and therefore the last triangular ear is composed

by xk−1 − xk − x0.

Figure ?? shows the schematic representation of the deletion process and remesh-

ing by the “ear” technique. The edge 3−v is detected as being smaller than hmin and

the node v is chosen to be removed. The neighbor triangles of node v are eliminated

from the surface mesh and the polyhedron formed by the 1-ring neighbor nodes of

v is used to remesh the empty space. In this example, the reconnection of nodes

to form the new triangulation is done by defining a polyhedron P = {1, 2, 3, 4, 5, 6}
and the first “ear” to be E1 = {1, 2, 3}. The first triangle is created and the node 2

is deleted from P . The new sub-set of P is defined as Ps1 = {1, 3, 4, 5, 6} and thus

the next “ear” as E2 = {3, 4, 5}. Node 4 is then deleted from the sub-set Ps1, thus

creating Ps2 = {1, 3, 5, 6}. A new ear is set on the triangle E3 = {5, 6, 1}, the node

6 is deleted from the sub-set Ps2 and consequently the new sub-set Ps3 = {1, 3, 5}
is assembled. Since the number of nodes in Ps3 = 3, the last triangle is formed and

the local re-meshing is accomplished.

(a) (b) (c)

Fig. 13. Reconstruction of the surface mesh by the “ear” technique. (a) First “ear” is achieved
by connecting the nodes 1 − 2 − 3 and forming the surface triangle. The node 2 is then deleted

from the polyhedron P . (b) The new triangle is formed by connecting the nodes 3 − 4 − 5, and

thus the node 4 is eliminated. (c) Last two triangles are created from nodes 5 − 6 − 1 (node 6 is
deleted) and 1− 3− 5, which are the remaining nodes of the successively deleted polyhedron.

The strategies presented above are not sufficient to guarantee optimal triangular

shapes. In fact, the selection of the initial node should be treated with care by

considering the polyhedron spatial geometry. For instance, if the polyhedron has

a concave shape and the initial node is wrongly chosen, the remeshing procedure

will invalidate the triangulation by creating non-triangular elements or even creating

elements outside the polyhedron boundaries. ”Flipping“ operations may be required

to achieve an optimal triangle distribution. Such an operation was implemented in

this work and it will be described in the next sections.
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4.4.3. Edge contraction

This strategy is based on the contraction of an edge and it is well discussed by

[?]. Once an edge h for each h < hmin is detected, this scheme aims to collapse

the two extremity vertices into the mid node of the edge h; thus the two adjacent

triangles are removed from the surface mesh, as shown in Fig. ??. After it has

been contracted, the edge h is no longer part of the surface mesh, so that nodes

1 and 2 occupy the same position while nodes 3 and 4 remain at their locations.

The benefit of such an approach, compared to the previous node deletion strategy,

is its geometrical simplicity since the surrounding connectivity of the mesh is not

affected.

As can be seen in Fig. ??, the curvature of two adjacent nodes found in the

insertion strategy should be taken into account when collapsing two vertices, thus

avoiding displacement errors and undesirable loss of mass. This is done by fitting

the equation of a circle to the nodes 1 and 2 and considering the curvature of the

adjacent nodes (1− 2− 3− 4). Thus, the collapsed node is displaced according to

the neighbor curvature values.

(a) (b)

Fig. 14. Contraction of a surface edge. (a) The edge h (segment 1-2) is found to be smaller than
hmin and (b) so it is collapsed to the mid node of the same edge. Due to its simplicity, only
triangles e1 and e2 are eliminated from the surface mesh and the remaining node connectivity is
not affected. The new location of node 1 should respect the curvature of its neighbors as described
in the insertion strategy.

4.4.4. Edge flipping

Since insertion, deletion and collapsing of vertices may deteriorate the mesh, edge

flipping may be required to restore the mesh quality. Such an operation in a 3-
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(a) (b) (c)

Fig. 15. Node displacement according to neighbor’s curvature in the process of edge contraction.

(a) The plane Ω is found using the curvature vectors of nodes 1 and 2, thus a circle equation is
fitted and (b) its solution is used to displace the node and avoid losses of mass. (c) The resulting

scheme of edge contraction considering the neighbor’s curvature.

dimensional surface is more restrictive compared to 2-dimensional spaces. The

flipping criteria implemented here considers four different measures:

• sum of the triangle’s aspect ratios,

• curvature of neighboring nodes,

• sum of the triangular areas,

• circumcenter of each triangle.

These parameters are evaluated at every time step to check if any flipping opera-

tions need to be performed. This is achieved by comparing the quality of the initial

and the modified pair of triangles; thus if one criteria fail, the flipping operation is

not performed.

In the literature, there are many ways to check the triangle aspect ratio such as

edge ratio measurement, relative size squared, maximum and minimum angle, etc.

(see [?], [?] and [?]). The one chosen to use here considers the radius of the inscribed

circle and the longest edge length. This scheme provides quantitatively the quality

of a given triangle and thus can be used as parameter in the flipping operation.

The neighbor’s curvature should be also considered before flipping an edge due to

a strong restriction on the surface embedded in R3. If the curvature κ is too high,

the flipping operation can damage the surface mesh, thus forcing the simulation to

shut down. In this work this curvature limiter has been adopted to be κmax = 40,

i.e. above this limit flipping is not performed. Note that the maximum allowed

curvature of 40 was chosen due to fast degeneration of surface elements, observed in

many different numerical experiments. Additionally, the sum of the triangle areas

are taken into account. This measure stops the flipping operation if the resulting

sum of the areas is smaller than before flipping. Finally, the circumcenter of each

triangle is also taken into account as a quality ratio parameter to the final local mesh.

Note that these flipping parameters are required to avoid strong mesh degradation

and large losses of mass. However, the flipping operation is especially required to

keep the mesh bounded to within a satisfactory aspect ratio.

Figure ??(a) shows a typical flipping operation done on the surface edge. Ac-
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cording to the criteria mentioned above, the triangles with vertices 1 − 2 − 3 and

1− 4− 2 have lower ratio qualities compared to the triangles with vertices 1− 4− 3

and 3 − 4 − 2, and thus the flipping operation is performed and the new mesh is

achieved. On the other hand, Fig. ??(b) shows a case where a diagonal flip should

be avoided since it contradicts the triangular surface mesh. The new generated ele-

ment 3−4−1−2 is not triangular and the surface mesh is consequently corrupted.

As pointed out by [?], pronounced loss of mass occurs if the flipping operation is

performed when the angle of two consecutive faces is lower than 90◦, where the

resulting elements may have a better aspect ratio but the loss of mass may reduce

significantly the precision of the simulation (see Fig ??(c)).

(a) (b) (c)

Fig. 16. Triangular surface flipping operations: (a) The triangle aspect ratio, the curvature of
neighboring nodes, and the triangle circumcenter are taken into consideration to perform the

flipping from edge 1 − 2 to 3 − 4; (b) the flipping of edge 1 − 2 cannot be assigned due to an

inconsistent mesh generation. (c) The flipping operation may lead to local loss of mass and it
should be treated with care.

4.5. Volume conservation

Due to the constant surface mesh treatment, the front-tracking methods are known

to accumulate spurious loss of mass during a simulation. However, for incom-

pressible flows, the volume of both phases should remain constant and excessive

geometrical operations may lead to excessive loss of mass. To avoid this pitfall, one

should minimize the number of flipping operations and limit the deletion and in-

sertion of new nodes. In certain cases where the surface mesh is at constant shear,

the number of geometrical operations cannot be reduced. As mentioned before,

successive mesh smoothing and the displacement of a new inserted node according

to its curvature should be performed. Nevertheless, due to the inherent truncation

and rounding errors, the combined mass of the two phases may slightly change.

Therefore, a simple treatment has been implemented to compensate for the spu-

rious mass variation, thus avoiding the accumulation of mass conservation errors.

This correction is done by moving the surface nodes in the direction of their normal

vector. Such a displacement is calculated based on the initial phase volume, which

is compared to the current iteration; thus a successive relaxation method is applied

to find the final node’s positions. The difference between the initial phase volume
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and the current time step volume may be chosen according to a given tolerance,

in which, for the present work, is on the order of 10−8. The volume conservation

algorithm is described in Table 1.

Table 1. Initial surface volume

TOL = 1.0E-08;

While abs(error) > TOL

{

ForEach surface node i

{

xNormal(i) = normal vector component of node i;

edge = local surface edge length size;

x(i) = x(i) + xNormal(i)*edge*error;

}

surfaceVolume = compute surface volume;

error = 1.0 - surfaceVolume/initSurfaceVolume;

}

The geometrical operations on the surface and volumetric meshes are performed

preferably at all time steps, as well as the volume correction algorithm and conse-

quently the adaptive mesh refinement is successfully achieved. Thus, the surface

and the volumetric meshes are corrected, the phase volumes are adjusted, and the

simulation can reach the final state with no significant loss of mass.

5. Interface discretization procedure

This section describes the interface discretization procedure, from its geometrical

representation to its nodal surface tension calculation. The Heaviside function is

presented and the distribution of fluid properties in the numerical domain is com-

pared to other standard methods found in the literature.

5.1. Geometrical representation

In front-tracking codes the interface is constructed by a set of geometrical objects,

such as triangles, edges and nodes, which are moved in Lagrangian fashion, while in-

stead the background mesh is fixed in the space. An additional function is required

to communicate from one mesh to another, since there is no implicit interconnectiv-

ity. This approach leads to the so-called zero-thickness interface, in which a sharp

representation is achieved. Although its excellent geometrical definition of a sharp

interface, the fluid properties close to the interface require a numerical treatment

to avoid undesirable instabilities. Thus, these properties are smoothed along the
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transition zone and the zero-thickness is no longer guaranteed.

Unlike front-tracking codes, the present surface and background meshes are part

of the same computational mesh, and thus no additional equation is required to pass

the information from one mesh to another. The 3-dimensional mesh comprises a

set of tetrahedron elements distributed through out the domain and the interface

is found by a scalar function, namely Heaviside, which defines the nodes belonging

to each phase and the interface itself. To achieve a zero-thickness representation,

the interface’s nodes must be connected consistently so that the piecewise discrete

interface may be represented by a set of interconnected triangles. In other words,

each triangle is a face of two adjacent tetrahedral elements. Figure ??(a) shows a

schematic representation of the discrete interface between the two different phases.

The same triangular face is shared by two adjacent tetrahedrons, and therefore the

zero-thickness interface is successfully achieved.

(a) (b)

Fig. 17. Geometrical representation of the interface between the phases. (a) The interface (gray

colored) is represented by a set of triangles, edges and nodes which are part of the tetrahedron

mesh. (b) The fluid property φ, such as density or viscosity, is sharply defined in phase 1 and
phase 2 with a zero thickness interface in the transition zone.

Advantages and drawbacks are found in such an approach, but one feature that is

especially interesting regards the definition of the fluid properties in the transition

area. From a macroscopic point of view, the physical meaning of an interface

is the region that sharply divides the volume occupied by each phase. Thus, it

is desirable that such an interface’s thickness should be kept as thin as possible.

The Lagrangian description guaranties the geometrical part, but due to the abrupt

change in properties from one phase to another, numerical instabilities may appear

and deteriorate the accuracy of the solution. Such a problem is mainly due to the

location of the interface somewhere in-between two computational elements. This

can be circumvented with the ALE and the Finite Element formulation, in which

the interface is not located in between mesh elements but it shares the faces of
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two adjacent computational mesh elements and thus the fluid properties remain

constant in each mesh element. A sharp transition of properties is thus successfully

achieved and does not require the use of any smoothing functions, consequently

assuring good accuracy in the balance of forces close to the interface.

Figure ??(b) shows the transition zone between the two phases colored by dark

and light gray, which was purposely drawn to highlight the methodology proposed

by this work. As can be seen, the property φ1 fills the elements of phase 1 and the

property φ2 fills exactly the elements of phase 2. Even for a high property ratio

φ1/φ2 = 1000, the methodology proposed here does not present spurious oscillation

in the pressure and the velocity field. Figure ?? depicts a 1-dimensional plot of

density distribution along the phases and shows a comparison of the density distri-

bution used in the implemented ALE-FEM scheme and two smoothed distributions

commonly found in Level-Set methods. Due to the Finite Element Method formu-

lation, each phase property φ is assigned to each tetrahedron element, and thus a

sharp transition of properties is achieved.

Fig. 18. Density distribution in two-phase flows. Phase 1 has a density ρ1 = 1000 and phase
2 has a density ρ2 = 1. The interface is at x ≈ 0.5. (a) The sharp transition is achieved by

the ALE-FE method, in which no artificial smoothing is required. (b) Smoothed distribution of
density commonly found in Level-Set methods (see [?] and [?]).

Despite the sharp definition of the interface and the fluid properties, topological

changes are not naturally handled in this method, thus requiring an implementation

effort on the modeling of coalescence and break-up of bubbles and drops. To address
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this issue, a geometrical model may be used to merge or split two surfaces. For in-

stance, when the film thickness between two bubbles are smaller than a predefined

parameter, the surfaces are connected and coalescence takes place. Although the

topological change occurs, the physical aspects are not fulfilled. In fact, the mech-

anisms of bubble coalescence and break-up is still an open issue and, consequently,

a potential field of future research.

5.2. Curvature and normal vectors in R3

The non-dimensional form of the surface tension term can be written as f = nκδ,

where κ is the curvature and n is the surface unity outward normal vector. Addi-

tionally, δ represents the Dirac delta function with support on the interface. Now,

let us consider a distributed surface tension force scheme based on the Heaviside

function:

f = σκ∇H (48)

In such a scheme, the distributed interface force f is a volume force and its intensity

σκ is calculated and applied in the direction of the gradient of the linear Heaviside

function ∇H, where σ stands for the surface tension coefficient. Thus, at the

interface, all the surface tension force is well distributed on the free node’s neighbors

and the effects of overshooting and undershooting are eliminated.

A new scheme is proposed to compute the mean curvature and the normal

vectors in 3-dimensional spaces, which will later be used in Eq. ?? to calculate the

surface tension force. The interface between the fluids is represented by a set of

geometrical objects which defines a surface, hence the new scheme should take into

consideration the different topologies that such a surface may present. This scheme

is described below.

Let Ωs be an embedded surface in R3, ni be the set of nodes n lying on the surface

Ωs and eji be the set of surface triangles associated to the ith node, where j is the

number of triangles, which may vary according to the structure of the surface mesh

(Fig. ??). The surface tension force f requires the calculation of the mean curvature

κ which, in the present model, is defined at each node i. An evaluation of this nodal

mean curvature κi is done by integrating the elemental force contribution over the

1-ring triangle neighbors and dividing by the corresponding barycentric area. To

calculate the elemental force, one should find two unit normal vectors, which lie on

the triangle surface, and integrate them on the segments that connect the mid-edges

node to the triangle’s centroid as shown in Fig. ??(a). Due to the Stokes theorem,

the distributed elemental force tnd in Fig. ??(c) is equivalent to the integral over the

segments connecting the triangle mid-edge nodes to the centroid. Thus, a simplified

way to calculate the elemental force is achieved by orthogonalizing one of the two

vectors (t1 or t2 - Fig. ??(b), finding its unit vector, and integrating the result to

the segment d, which connects two triangle mid-edges Fig. ??(c). Consequently, an
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evaluation of the ith node mean curvature is found by integrating the intensity of

elemental force tnd in the 1-ring triangle neighbors eij and dividing it by the sum

of the barycentric areas of eij . The mentioned expression is calculated as follows:

Fig. 19. Schematic representation of the curvature evaluation κi at a common surface node, which

is calculated using geometric operations at all the triangular neighboring elements and weighted

by the barycentric area (gray colored).

(a)

d

(b)

tnd

(c)

Fig. 20. Surface triangle. (a) An elemental force evaluation is done using the sum of the dis-

tributed forces t1nd1 and t2nd2. (b) Using Stokes theorem, the elemental distributed force may
be calculated orthogonalizing one of the two linearly independent vectors t1 and t2 to the segment

d which connects two mid-edge nodes. (c) An evaluation of the node mean curvature is found
by dividing the sum of the module of the calculated distributed forces (|tnd|) by the sum of the

barycentric areas (Eq. ??.)
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κi =

∣∣∣∣ m∑
j=1

(tnd)j

∣∣∣∣
m∑
j=1

Aij

(49)

In the above equation, κi is the node mean curvature and Aij is the barycentric

area of the jth triangle neighbor of i, which is equivalent to 1/3 of the triangle

area, and m is the number of neighbor elements of i. The direction of application of

such a curvature is given by the normal vector, that unfortunately cannot always be

defined by the direction of the vector ki itself due to a singular case where the set

of triangular faces eji are on the same plane, and thus the length of the computed

vector is equal to zero and its direction is then not defined. In this singular case,

to find the normal vector of the node ni one can approximate it by the sum of the

cross product of two vectors of eji since the 1-ring neighbor nodes are consistently

sorted. This scheme is an extension for surfaces embedded in R3 of the previously

presented 2-dimensional scheme shown in Fig. ??.

(a) (b)

Fig. 21. Normal vector evaluation in 3-dimensional spaces. (a) The normal vector of each triangle

in the surface may be found by applying the cross product of two tangent vectors which lie in the
same triangle plane. (b) The final nodal normal vector ni is found by summing the normal vectors

ne for e = {1..j}. In the illustrated case j = 5.

Due to the unstructured character of the surface mesh, the number of neighbor

triangular elements e associated to the node i must be taken into account, since it

may vary from one node to another. Moreover, a consistent surface orientation is

required in this scheme so that it can be successfully applied. Substituting such a

distributed force into Eq. ?? yields:
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f = σ

∣∣∣∣ m∑
j=1

(tnd)j

∣∣∣∣
m∑
j=1

Aij

n∇H (50)

and the calculation of the surface tension force in 3-dimensions is thus achieved.

5.3. The discrete surface tension force

The calculation of the surface tension force is based on the gradient of a Heaviside

function ∇H. A Finite Element formulation for the given force is achieved by

considering the following scheme:

1

We
Mf =

1

We
ΣGHλ (51)

In the above equation, the symbol Σ represents a diagonal matrix with elements

σκ1, σκ2, σκ3, · · · , σκNV , where NV is the total number of mesh nodes relative

to the pressure field. The matrix G stands for the discrete form of the gradient

operator ∇ and Hλ is the discrete Heaviside function.

6. Results

Many quantitative and qualitative discussions on the implementation of a 3D Arbi-

trary Lagrangian-Eulerian Finite Element method may be found in [?],[?],[?]. The

reader is also referred to visit two available video libraries showing several test cases,

benchmarks and latest results on two-phase flows in macro and micro scale config-

urations at http://gustavo.rabello.org/videos and http://ltcm.epfl.ch/op/edit/page-

70192.html

7. Conclusions

A numerical method is presented to study two-phases flows for single and multiple

bubbles. The governing equations are written in the Arbitrary Lagrangian-Eulerian

formulation and discretized by the Finite Element Method. Using such a combina-

tion (ALE and FEM), the interface between the fluids is consequently defined by

interconnected nodes, assuring a sharp transition in properties. Due to the constant

motion of the mesh nodes, an adaptive remeshing process is proposed and suitable

for large mesh deformations, including geometric operations to add and remove

nodes and edges of the mesh. Moreover, the curvature is conveniently computed

through the interface nodes and evaluated as a capillary pressure, leading to accu-

rate results with moderate programming effort and computational cost. As result,
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a modern and flexible tool is described to simulate a variety of physical problems

in simple and complex geometries for a wide range of working fluid conditions.


